def __init__(self, k = 10): flag = "ntm_model.new_trained.freq=100.word=22548" conf = Config(flag, "full", 200) print(flag) print(k) self.k = k self.data_path = "".join((home, "/Data/yelp/output/raw_review_restaurant.json")) # generate dataset self.train_path = "train80p1.json" self.test_path = "test80p1.json" self.prod_vector = conf.path_doc_w2c self.prod2idx = {} self.idx2prod = [] self.user2idx = {} self.idx2user = []
lr = float(args[5]) print(args) os.environ['MKL_NUM_THREADS'] = str(n_processer) os.environ['GOTO_NUM_THREADS'] = str(n_processer) os.environ['OMP_NUM_THREADS'] = str(n_processer) os.environ['THEANO_FLAGS'] = 'device=cpu,blas.ldflags=-lblas -lgfortran' import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152 os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3" config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True) config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 1 conf = Config(flag, args[2], int(args[3])) print(flag) print(theano.config.openmp) # get data dp = DataProvider(conf) model, word_embed, prod_embed, tag_embed = build_attr_model(dp) if os.path.exists(conf.path_checkpoint): print("load previous checker") model.load_weights(conf.path_checkpoint) dp.generate_init() model.fit_generator(generator=dp.generate_data(batch_size=conf.batch_size), nb_worker=n_processer, nb_epoch=conf.n_epoch, samples_per_epoch=int(np.ceil(conf.sample_per_epoch / conf.batch_size)),