def execute(self): logging.info("executing process engine") data_folder = dataset_scheme["folder"] # load data from scheme above for log_obj in dataset_scheme["data"]: log_file_data: CoreDataFrame = self.process_data(data_folder, log_obj) logging.warning("dataframe shape: "+str(log_file_data.data.shape)) # with the CoreDataFrame from process data, perform user/entity analysis/extraction # get entities, and users all_entities: dict = GetAllEntities().get() all_users: dict = GetAllUsers().get()
def execute(self) -> bool: logging.info("executing process engine") loaded_data_scheme: dict = ReadJSONFileFS(DATASET_SCEME_URL).data # for each data source_group for source_group in loaded_data_scheme["source_groups"]: data_folder = source_group["folder"] # load data from scheme above for log_obj in source_group["data"]: logging.info("Process: model Log_obj: " + str(log_obj["log_name"])) # TODO: load dataset index file holding dataset statuses #TODO: load "unprocessed" datasets, mostly by scheme set above in dataset_scheme # get the new dataframe log_file_dataset_session: DatasetSession = self.process_data( data_folder, log_obj) # TODO: condition on log_type, and location_type # TODO: with the CoreDataFrame from process data, perform user/entity analysis/extraction extracted_users: UserSet = ExtractAllUsersCSV.get( log_file_dataset_session, log_obj) test_user: str = str(list(extracted_users.users.keys())[:2]) logging.info( "ProcessEngine, execute, extracted_users, test user: " + test_user) # store the extracted users, or update the storage # extracted_users.set_of_users #TODO: mark log_obj as processed afterwards # get entities all_entities: dict = GetAllEntities().get() # get users all_users: dict = GetAllUsers().get() # after read the data, perform entity analysis using Entity types # adjust risk per entity return True
def __call__(self, *args) -> str: display_type: str = args[0] logging.info("PriorGetDisplay OF TYPE -- __call__: "+args[0]) # fetch the display data display = Display() logging.error("Display Type: "+str(display_type)) logging.error("Display types 1: "+str(APIType.GET_ALL_ENTITIES.value)) logging.error("Display types 2: "+str(APIType.GET_ALL_USERS.value)) logging.error("Display types 3: "+str(APIType.GET_SYSTEM_LOG.value)) if display_type == APIType.GET_ALL_ENTITIES.value: all_entities: dict = GetAllEntities().get() display.set(all_entities) elif display_type == APIType.GET_ALL_USERS.value: all_users: dict = GetAllUsers().get() display.set(all_users) elif display_type == APIType.GET_SYSTEM_LOG.value: system_display: dict = display.get_system_display() display.set(system_display) else: raise Exception("Unsupported API Display type") return str(display.data)
def execute(self) -> bool: logging.info("executing process engine") data_folder = dataset_scheme["folder"] # load data from scheme above for log_obj in dataset_scheme["data"]: # TODO: load dataset index file holding dataset statuses #TODO: load "unprocessed" datasets, mostly by scheme set above in dataset_scheme # get the new dataframe log_file_dataset_session: DatasetSession = self.process_data( data_folder, log_obj) #TODO: with the CoreDataFrame from process data, perform user/entity analysis/extraction extracted_users: UserSet = ExtractAllUsersCSV.get( log_file_dataset_session, log_obj) logging.info("ProcessEngine, execute, extracted_users: " + str(extracted_users.users[:2])) # store the extracted users, or update the storage # extracted_users.set_of_users #TODO: mark log_obj as processed afterwards # get entities all_entities: dict = GetAllEntities().get() # get users all_users: dict = GetAllUsers().get() # after read the data, perform entity analysis using Entity types # adjust risk per entity # return a report for execution round return True