def __init__(self, mbounds, sbounds): self.m_channels = [ envs.Channel('m{}'.format(i), mb_i) for i, mb_i in enumerate(mbounds) ] self.s_channels = [ envs.Channel('s{}'.format(i), sb_i) for i, sb_i in enumerate(sbounds) ]
def __init__(self, m_bounds, s_dim): self.m = np.random.random((len(m_bounds), s_dim)) self.m_channels = [ envs.Channel('order{}'.format(i), mb_i) for i, mb_i in enumerate(m_bounds) ] self.s_channels = [ envs.Channel('feedback{}'.format(i)) for _ in range(s_dim) ]
def __init__(self, mbounds): self.m_channels = [ envs.Channel('m{}'.format(i), mb_i) for i, mb_i in enumerate(mbounds) ] self.s_channels = [ envs.Channel('s0', (0., 1.)), envs.Channel('s1', (-1., 1.)), envs.Channel('s2', (3., 10.)) ]
def __init__(self): m_bounds = ((0.0, 1.0), (0.0, 1.0)) self.m_channels = [ envs.Channel(i, mb_i) for i, mb_i in enumerate(m_bounds) ] self.s_channels = [envs.Channel(i) for i in enumerate((2, 3))] self._cfg = scicfg.SciConfig() self._cfg.m_channels = self.m_channels self._cfg.s_channels = self.s_channels self._cfg._freeze(True)
def __init__(self, m_bounds, s_dim): self.m = np.random.random((s_dim, len(m_bounds))) self.m_channels = [ envs.Channel('m_{}'.format(i), mb_i) for i, mb_i in enumerate(m_bounds) ] self.s_channels = [ envs.Channel('s_{}'.format(i)) for i in range(s_dim) ] self._cfg = scicfg.SciConfig() self._cfg.m_channels = self.m_channels self._cfg.s_channels = self.s_channels self._cfg._freeze(True)
def __init__(self, mbounds): self.m_channels = [ envs.Channel('m_{}'.format(i), mb_i) for i, mb_i in enumerate(mbounds) ] self.s_channels = [ envs.Channel('s_0'), envs.Channel('s_1'), envs.Channel('s_3') ] self._cfg = scicfg.SciConfig() self._cfg.m_channels = self.m_channels self._cfg.s_channels = self.s_channels self._cfg._freeze(True)
def __init__(self): m_bounds = ((0.0, 1.0), (0.0, 1.0)) self.m_channels = [ envs.Channel(i, mb_i) for i, mb_i in enumerate(m_bounds) ] self.s_channels = [envs.Channel(i) for i in enumerate((2, 3))]
def __init__(self): self.m_channels = [envs.Channel('m_0', ( 0.0, 1.0)), envs.Channel('m_1', (-10.0, 0.0))] self.s_channels = [envs.Channel('feedback0'), envs.Channel('feedback1'), envs.Channel('feedback3')]