Example #1
0
    def __call__(self, src_ds):
        logger.info("Applying ReprojectionOptimization")
        # setup
        src_sr = osr.SpatialReference()
        src_sr.ImportFromWkt(src_ds.GetProjection())

        dst_sr = osr.SpatialReference()
        dst_sr.ImportFromEPSG(self.srid)

        if src_sr.IsSame(dst_sr) and (src_ds.GetGeoTransform()[1] > 0) \
                and (src_ds.GetGeoTransform()[5] < 0) \
                and (src_ds.GetGeoTransform()[2] == 0) \
                and (src_ds.GetGeoTransform()[4] == 0):
            logger.info(
                "Source and destination projection are equal and image "
                "is not flipped or has rotated axes. Thus, no "
                "reprojection is required.")
            return src_ds

        # create a temporary dataset to get information about the output size
        tmp_ds = gdal.AutoCreateWarpedVRT(src_ds, None, dst_sr.ExportToWkt(),
                                          gdal.GRA_Bilinear, 0.125)

        try:
            # create the output dataset
            dst_ds = create_temp(tmp_ds.RasterXSize,
                                 tmp_ds.RasterYSize,
                                 src_ds.RasterCount,
                                 src_ds.GetRasterBand(1).DataType,
                                 temp_root=self.temporary_directory)

            # initialize with no data
            for i in range(src_ds.RasterCount):
                src_band = src_ds.GetRasterBand(i + 1)
                if src_band.GetNoDataValue() is not None:
                    dst_band = dst_ds.GetRasterBand(i + 1)
                    dst_band.SetNoDataValue(src_band.GetNoDataValue())
                    dst_band.Fill(src_band.GetNoDataValue())

            # reproject the image
            dst_ds.SetProjection(dst_sr.ExportToWkt())
            dst_ds.SetGeoTransform(tmp_ds.GetGeoTransform())

            gdal.ReprojectImage(src_ds, dst_ds, src_sr.ExportToWkt(),
                                dst_sr.ExportToWkt(), gdal.GRA_Bilinear)

            tmp_ds = None

            # copy the metadata
            copy_metadata(src_ds, dst_ds)

            return dst_ds
        except:
            cleanup_temp(dst_ds)
            raise
Example #2
0
    def __call__(self, src_ds):
        logger.info("Applying ReprojectionOptimization")
        # setup
        src_sr = osr.SpatialReference()
        src_sr.ImportFromWkt(src_ds.GetProjection())

        dst_sr = osr.SpatialReference()
        dst_sr.ImportFromEPSG(self.srid)

        if src_sr.IsSame(dst_sr) and (src_ds.GetGeoTransform()[1] > 0) \
                and (src_ds.GetGeoTransform()[5] < 0) \
                and (src_ds.GetGeoTransform()[2] == 0) \
                and (src_ds.GetGeoTransform()[4] == 0):
            logger.info("Source and destination projection are equal and image "
                        "is not flipped or has rotated axes. Thus, no "
                        "reprojection is required.")
            return src_ds

        # create a temporary dataset to get information about the output size
        tmp_ds = gdal.AutoCreateWarpedVRT(src_ds, None, dst_sr.ExportToWkt(),
                                          gdal.GRA_Bilinear, 0.125)

        try:
            # create the output dataset
            dst_ds = create_temp(tmp_ds.RasterXSize, tmp_ds.RasterYSize,
                                 src_ds.RasterCount,
                                 src_ds.GetRasterBand(1).DataType,
                                 temp_root=self.temporary_directory)

            # initialize with no data
            for i in range(src_ds.RasterCount):
                src_band = src_ds.GetRasterBand(i+1)
                if src_band.GetNoDataValue() is not None:
                    dst_band = dst_ds.GetRasterBand(i+1)
                    dst_band.SetNoDataValue(src_band.GetNoDataValue())
                    dst_band.Fill(src_band.GetNoDataValue())

            # reproject the image
            dst_ds.SetProjection(dst_sr.ExportToWkt())
            dst_ds.SetGeoTransform(tmp_ds.GetGeoTransform())

            gdal.ReprojectImage(src_ds, dst_ds,
                                src_sr.ExportToWkt(),
                                dst_sr.ExportToWkt(),
                                gdal.GRA_Bilinear)

            tmp_ds = None

            # copy the metadata
            copy_metadata(src_ds, dst_ds)

            return dst_ds
        except:
            cleanup_temp(dst_ds)
            raise
Example #3
0
    def __call__(self, src_ds):
        logger.info("Applying ColorIndexOptimization")
        try:
            dst_ds = create_temp(src_ds.RasterXSize,
                                 src_ds.RasterYSize,
                                 1,
                                 gdal.GDT_Byte,
                                 temp_root=self.temporary_directory)

            if not self.palette_file:
                # create a color table as a median of the given dataset
                ct = gdal.ColorTable()
                gdal.ComputeMedianCutPCT(src_ds.GetRasterBand(1),
                                         src_ds.GetRasterBand(2),
                                         src_ds.GetRasterBand(3), 256, ct)

            else:
                # copy the color table from the given palette file
                pct_ds = gdal.Open(self.palette_file)
                pct_ct = pct_ds.GetRasterBand(1).GetRasterColorTable()
                if not pct_ct:
                    raise ValueError("The palette file '%s' does not have a "
                                     "Color Table." % self.palette_file)
                ct = pct_ct.Clone()
                pct_ds = None

            dst_ds.GetRasterBand(1).SetRasterColorTable(ct)
            gdal.DitherRGB2PCT(src_ds.GetRasterBand(1),
                               src_ds.GetRasterBand(2),
                               src_ds.GetRasterBand(3),
                               dst_ds.GetRasterBand(1), ct)

            copy_projection(src_ds, dst_ds)
            copy_metadata(src_ds, dst_ds)

            return dst_ds
        except:
            cleanup_temp(dst_ds)
            raise
Example #4
0
    def __call__(self, src_ds):
        logger.info("Applying ColorIndexOptimization")
        try:
            dst_ds = create_temp(src_ds.RasterXSize, src_ds.RasterYSize,
                                 1, gdal.GDT_Byte,
                                 temp_root=self.temporary_directory)

            if not self.palette_file:
                # create a color table as a median of the given dataset
                ct = gdal.ColorTable()
                gdal.ComputeMedianCutPCT(src_ds.GetRasterBand(1),
                                         src_ds.GetRasterBand(2),
                                         src_ds.GetRasterBand(3),
                                         256, ct)

            else:
                # copy the color table from the given palette file
                pct_ds = gdal.Open(self.palette_file)
                pct_ct = pct_ds.GetRasterBand(1).GetRasterColorTable()
                if not pct_ct:
                    raise ValueError("The palette file '%s' does not have a "
                                     "Color Table." % self.palette_file)
                ct = pct_ct.Clone()
                pct_ds = None

            dst_ds.GetRasterBand(1).SetRasterColorTable(ct)
            gdal.DitherRGB2PCT(src_ds.GetRasterBand(1),
                               src_ds.GetRasterBand(2),
                               src_ds.GetRasterBand(3),
                               dst_ds.GetRasterBand(1), ct)

            copy_projection(src_ds, dst_ds)
            copy_metadata(src_ds, dst_ds)

            return dst_ds
        except:
            cleanup_temp(dst_ds)
            raise
Example #5
0
    def __call__(self, src_ds):
        logger.info("Applying BandSelectionOptimization")
        try:
            dst_ds = create_temp(src_ds.RasterXSize,
                                 src_ds.RasterYSize,
                                 len(self.bands),
                                 self.datatype,
                                 temp_root=self.temporary_directory)
            dst_range = get_limits(self.datatype)

            multiple, multiple_written = 0, False

            for dst_index, (src_index, dmin, dmax) in enumerate(self.bands, 1):
                # check if next band is equal
                if dst_index < len(self.bands) and \
                        (src_index, dmin, dmax) == self.bands[dst_index]:
                    multiple += 1
                    continue
                # check that src band is available
                if src_index > src_ds.RasterCount:
                    continue

                # initialize with zeros if band is 0
                if src_index == 0:
                    src_band = src_ds.GetRasterBand(1)
                    data = numpy.zeros((src_band.YSize, src_band.XSize),
                                       dtype=gdal_array.codes[self.datatype])
                    src_min, src_max = (0, 0)
                # use src_ds band otherwise
                else:
                    src_band = src_ds.GetRasterBand(src_index)
                    src_min, src_max = src_band.ComputeRasterMinMax()

                # get min/max values or calculate from band
                if dmin is None:
                    dmin = get_limits(src_band.DataType)[0]
                elif dmin == "min":
                    dmin = src_min
                if dmax is None:
                    dmax = get_limits(src_band.DataType)[1]
                elif dmax == "max":
                    dmax = src_max
                src_range = (float(dmin), float(dmax))

                block_x_size, block_y_size = src_band.GetBlockSize()

                num_x = int(math.ceil(float(src_band.XSize) / block_x_size))
                num_y = int(math.ceil(float(src_band.YSize) / block_y_size))

                dst_band = dst_ds.GetRasterBand(dst_index)
                if src_band.GetNoDataValue() is not None:
                    dst_band.SetNoDataValue(src_band.GetNoDataValue())

                for block_x, block_y in product(range(num_x), range(num_y)):
                    offset_x = block_x * block_x_size
                    offset_y = block_y * block_y_size
                    size_x = min(src_band.XSize - offset_x, block_x_size)
                    size_y = min(src_band.YSize - offset_y, block_y_size)
                    data = src_band.ReadAsArray(offset_x, offset_y, size_x,
                                                size_y)

                    # perform clipping and scaling
                    data = ((dst_range[1] - dst_range[0]) *
                            ((numpy.clip(data, dmin, dmax) - src_range[0]) /
                             (src_range[1] - src_range[0])))

                    # set new datatype
                    data = data.astype(gdal_array.codes[self.datatype])

                    # write result
                    dst_band.WriteArray(data, offset_x, offset_y)

                    # write equal bands at once
                    if multiple > 0:
                        for i in range(multiple):
                            dst_band_multiple = dst_ds.GetRasterBand(
                                dst_index - 1 - i)
                            dst_band_multiple.WriteArray(
                                data, offset_x, offset_y)
                        multiple_written = True

                if multiple_written:
                    multiple = 0
                    multiple_written = False

            copy_projection(src_ds, dst_ds)
            copy_metadata(src_ds, dst_ds)

            return dst_ds

        except:
            cleanup_temp(dst_ds)
            raise
Example #6
0
    def __call__(self, src_ds):
        logger.info("Applying BandSelectionOptimization")
        try:
            dst_ds = create_temp(src_ds.RasterXSize, src_ds.RasterYSize,
                                 len(self.bands), self.datatype,
                                 temp_root=self.temporary_directory)
            dst_range = get_limits(self.datatype)

            multiple, multiple_written = 0, False

            for dst_index, (src_index, dmin, dmax) in enumerate(self.bands, 1):
                # check if next band is equal
                if dst_index < len(self.bands) and \
                        (src_index, dmin, dmax) == self.bands[dst_index]:
                    multiple += 1
                    continue
                # check that src band is available
                if src_index > src_ds.RasterCount:
                    continue

                # initialize with zeros if band is 0
                if src_index == 0:
                    src_band = src_ds.GetRasterBand(1)
                    data = numpy.zeros(
                        (src_band.YSize, src_band.XSize),
                        dtype=gdal_array.codes[self.datatype]
                    )
                    src_min, src_max = (0, 0)
                # use src_ds band otherwise
                else:
                    src_band = src_ds.GetRasterBand(src_index)
                    src_min, src_max = src_band.ComputeRasterMinMax()

                # get min/max values or calculate from band
                if dmin is None:
                    dmin = get_limits(src_band.DataType)[0]
                elif dmin == "min":
                    dmin = src_min
                if dmax is None:
                    dmax = get_limits(src_band.DataType)[1]
                elif dmax == "max":
                    dmax = src_max
                src_range = (float(dmin), float(dmax))

                block_x_size, block_y_size = src_band.GetBlockSize()

                num_x = int(math.ceil(float(src_band.XSize) / block_x_size))
                num_y = int(math.ceil(float(src_band.YSize) / block_y_size))

                dst_band = dst_ds.GetRasterBand(dst_index)
                if src_band.GetNoDataValue() is not None:
                    dst_band.SetNoDataValue(src_band.GetNoDataValue())

                for block_x, block_y in product(range(num_x), range(num_y)):
                    offset_x = block_x * block_x_size
                    offset_y = block_y * block_y_size
                    size_x = min(src_band.XSize - offset_x, block_x_size)
                    size_y = min(src_band.YSize - offset_y, block_y_size)
                    data = src_band.ReadAsArray(
                        offset_x, offset_y, size_x, size_y
                    )

                    # perform clipping and scaling
                    data = ((dst_range[1] - dst_range[0]) *
                            ((numpy.clip(data, dmin, dmax) - src_range[0]) /
                            (src_range[1] - src_range[0])))

                    # set new datatype
                    data = data.astype(gdal_array.codes[self.datatype])

                    # write result
                    dst_band.WriteArray(data, offset_x, offset_y)

                    # write equal bands at once
                    if multiple > 0:
                        for i in range(multiple):
                            dst_band_multiple = dst_ds.GetRasterBand(
                                dst_index-1-i
                            )
                            dst_band_multiple.WriteArray(
                                data, offset_x, offset_y
                            )
                        multiple_written = True

                if multiple_written:
                    multiple = 0
                    multiple_written = False

            copy_projection(src_ds, dst_ds)
            copy_metadata(src_ds, dst_ds)

            return dst_ds

        except:
            cleanup_temp(dst_ds)
            raise