Example #1
0
def circle4points(p, tol=1e-1):
    A = np.column_stack((2. * p[:, 0], 2. * p[:, 1], [-1, -1, -1]))
    b = np.sum(p**2, axis=1)
    # Normalizing the vectors
    norm = np.sqrt(np.sum(A * A, axis=1))
    An = np.transpose(A.T / norm)
    bn = b / norm
    # Solving the system
    M = GaussElimination(An, bn)
    M.solve()
    sol = M.sol
    # Calculating determinant of a 3x3 matrix
    det = An[0,0] * An[1,1] * An[2,2] + An[0,1] * An[1,2] * An[2,0] + \
          An[0,2] * An[1,0] * An[2,1] - An[0,2] * An[1,1] * An[2,0] - \
          An[0,1] * An[1,0] * An[2,2] - An[0,0] * An[1,2] * An[2,1]
    r = np.sqrt(sol[0]**2 + sol[1]**2 - sol[2])
    eps = np.finfo(float).eps
    if np.abs(det) < eps:
        print "System does not have a solution (det=0)"
    elif np.abs(det) < tol:
        print "System is ill conditioned: |det| = {0}".format(np.abs(det))
    else:
        print "System has a determined solution: det = {0}".format(det)
    print "Solution is x = {0:.5f}, y={1:.5f} and r={2:.5f}".format(
        sol[0], sol[1], r)
    return
Example #2
0
def circle4points(p, tol=1e-1):
    A = np.column_stack((2. * p[:,0], 2. * p[:,1], [-1,-1,-1]))
    b = np.sum(p**2, axis=1)
    # Normalizing the vectors
    norm = np.sqrt(np.sum(A*A, axis=1))
    An = np.transpose(A.T / norm)
    bn = b / norm
    # Solving the system
    M = GaussElimination(An,bn)
    M.solve()
    sol = M.sol
    # Calculating determinant of a 3x3 matrix
    det = An[0,0] * An[1,1] * An[2,2] + An[0,1] * An[1,2] * An[2,0] + \
          An[0,2] * An[1,0] * An[2,1] - An[0,2] * An[1,1] * An[2,0] - \
          An[0,1] * An[1,0] * An[2,2] - An[0,0] * An[1,2] * An[2,1]
    r = np.sqrt(sol[0]**2 + sol[1]**2 - sol[2])
    eps = np.finfo(float).eps
    if np.abs(det) < eps:
        print "System does not have a solution (det=0)"
    elif np.abs(det) < tol:
        print "System is ill conditioned: |det| = {0}".format(np.abs(det))
    else:
        print "System has a determined solution: det = {0}".format(det)
    print "Solution is x = {0:.5f}, y={1:.5f} and r={2:.5f}".format(sol[0],
                                                                    sol[1],r)
    return
Example #3
0
class chi2_minimization():
    """ Calculate coefficients for linear combination of functions that
        minimize the chi^2. """
    def __init__(self, x, y, fs):
        self.x = x
        self.y = y
        self.fs = fs
        self.dim = len(fs)
        self.make_system()
        self.M = GaussElimination(self.A, self.b)
        self.M.solve()
        self.sol = self.M.sol

    def make_system(self):
        """ Calculate the least square standard system"""
        fx = np.zeros((self.dim, len(self.x)))
        self.b = np.zeros((self.dim))
        for i in range(self.dim):
            fx[i] = self.fs[i](self.x)
            self.b[i] = np.sum(self.fs[i](self.x) * self.y)
        self.A = np.dot(fx, fx.T)
Example #4
0
class chi2_minimization():
    """ Calculate coefficients for linear combination of functions that
        minimize the chi^2. """
    def __init__(self, x, y, fs):
        self.x = x
        self.y = y
        self.fs = fs
        self.dim = len(fs)
        self.make_system()
        self.M = GaussElimination(self.A, self.b)
        self.M.solve()
        self.sol = self.M.sol

    def make_system(self):
        """ Calculate the least square standard system"""
        fx  = np.zeros((self.dim, len(self.x)))
        self.b = np.zeros((self.dim))
        for i in range(self.dim):
            fx[i] = self.fs[i](self.x)
            self.b[i] = np.sum(self.fs[i](self.x) * self.y)
        self.A = np.dot(fx, fx.T)