Example #1
0
def addmins(G,X,Y,S,D,xmin,mode=OFFHESSZERO, GRADNOISE=1e-9,EP_SOFTNESS=1e-9,EPROP_LOOPS=20):
    dim=X.shape[1]
    #grad elements are zero
    Xg = sp.vstack([xmin]*dim)
    Yg = sp.zeros([dim,1])
    Sg = sp.ones([dim,1])*GRADNOISE
    Dg = [[i] for i in range(dim)]
    
    #offdiag hessian elements
    nh = ((dim-1)*dim)/2
    Xh = sp.vstack([sp.empty([0,dim])]+[xmin]*nh)
    Dh=[]
    for i in xrange(dim):
        for j in xrange(i):
            Dh.append([i,j])
    class MJMError(Exception):
        pass
    if mode==OFFHESSZERO:
        Yh = sp.zeros([nh,1])
        Sh = sp.ones([nh,1])*GRADNOISE
    elif mode==OFFHESSINFER:
        raise MJMError("addmins with mode offhessinfer not implemented yet")
    else:
        raise MJMError("invalid mode in addmins")
        
    #diag hessian and min
    Xd = sp.vstack([xmin]*(dim+1))
    Dd = [[sp.NaN]]+[[i,i] for i in xrange(dim)]
    [m,V] = G.infer_full_post(Xd,Dd)
    for i in xrange(dim):
        if V[i,i]<0:
            class MJMError(Exception):
                pass
            print [m,V]
            raise MJMError('negative on diagonal')
        
    yminarg = sp.argmin(Y)
    Y_ = sp.array([Y[yminarg,0]]+[0.]*dim)
    Z = sp.array([-1]+[1.]*dim)
    F = sp.array([S[yminarg,0]]+[EP_SOFTNESS]*dim)
    [Yd,Stmp] = eprop.expectation_prop(m,V,Y_,Z,F,EPROP_LOOPS)
    Sd = sp.diagonal(Stmp).flatten()
    Sd.resize([dim+1,1])
    Yd.resize([dim+1,1])
    #concat the obs
    Xo = sp.vstack([X,Xg,Xd,Xh])
    Yo = sp.vstack([Y,Yg,Yd,Yh])
    So = sp.vstack([S,Sg,Sd,Sh])
    Do = D+Dg+Dd+Dh
    
    return [Xo,Yo,So,Do]
Example #2
0
import eprop
import scipy as sp
from scipy import linalg as spl
from scipy import stats as sps
from matplotlib import pyplot as plt

#basic ep test on three values
m = sp.array([1.,2.,0.5])
v = sp.array([[1.,0.5,0.2],[0.5,2.,0.5],[0.2,0.5,1.]])
n=len(m)


Y = sp.array([1.,0.,1.])
Z = sp.array([-1,1,-1])
F = sp.array([0.25**2,0.,0.])
mt,vt = eprop.expectation_prop(m,v,Y,Z,F,35)

mu,vu = eprop.gaussian_fusion(m,mt,v,vt)

f,ax = plt.subplots(n,sharex=True)
ns=200
sup = sp.linspace(-6,6,ns)
for i in xrange(n):
    ax[i].plot(sup,sps.norm.pdf(sup,loc=m[i],scale=sp.sqrt(v[i,i])),'b')
    ax[i].plot(sup,sps.norm.pdf(sup,loc=mu[i],scale=sp.sqrt(vu[i,i])),'r')
    ax[i].twinx().plot(sup,sps.norm.cdf(Z[i]*(sup-Y[i])/max(F[i],1e-20))*sps.norm.pdf(sup,loc=m[i],scale=sp.sqrt(v[i,i])),'g')
#est on a gp

import ESutils
import GPdc
nt=5
Example #3
0
#!/usr/bin/env python2
# encoding: UTF-8

# To change this license header, choose License Headers in Project Properties.
# To change this template file, choose Tools | Templates
# and open the template in the editor.

import OPTutils
import scipy as sp
from matplotlib import pyplot as plt
import GPdc

import eprop
import pickle

[m0, V0, Y, Z, F, z] = pickle.load(open("epkill.p", "rb"))
print m0
print V0
print Y
print Z
print F
print z

import eprop

eprop.expectation_prop(m0, V0, Y, Z, F, z)
Example #4
0
import eprop
import scipy as sp
from scipy import linalg as spl
from scipy import stats as sps
from matplotlib import pyplot as plt

# basic ep test on three values
m = sp.array([1.0, 2.0, 0.5])
v = sp.array([[1.0, 0.5, 0.2], [0.5, 2.0, 0.5], [0.2, 0.5, 1.0]])
n = len(m)


Y = sp.array([1.0, 0.0, 1.0])
Z = sp.array([-1, 1, -1])
F = sp.array([0.25 ** 2, 0.0, 0.0])
mt, vt = eprop.expectation_prop(m, v, Y, Z, F, 35)

mu, vu = eprop.gaussian_fusion(m, mt, v, vt)

f, ax = plt.subplots(n, sharex=True)
ns = 200
sup = sp.linspace(-6, 6, ns)
for i in xrange(n):
    ax[i].plot(sup, sps.norm.pdf(sup, loc=m[i], scale=sp.sqrt(v[i, i])), "b")
    ax[i].plot(sup, sps.norm.pdf(sup, loc=mu[i], scale=sp.sqrt(vu[i, i])), "r")
    ax[i].twinx().plot(
        sup,
        sps.norm.cdf(Z[i] * (sup - Y[i]) / max(F[i], 1e-20)) * sps.norm.pdf(sup, loc=m[i], scale=sp.sqrt(v[i, i])),
        "g",
    )
# est on a gp
Example #5
0
#!/usr/bin/env python2
#encoding: UTF-8

# To change this license header, choose License Headers in Project Properties.
# To change this template file, choose Tools | Templates
# and open the template in the editor.

import OPTutils
import scipy as sp
from matplotlib import pyplot as plt
import GPdc

import eprop
import pickle
[m0,V0,Y,Z,F,z] = pickle.load(open('epkill.p','rb'))
print m0
print V0
print Y
print Z
print F
print z

import eprop
eprop.expectation_prop(m0,V0,Y,Z,F,z)