Example #1
0
def test_assert_exception_to_many_terms():
    x = Symbol('x')
    basis_functions = [x,exp,log,sin] #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    fun_generator = DatasetCreator(basis_functions,max_linear_terms=5, random_terms=False)
    with pytest.raises(IndexError):
        for i in range(10):
            fun_generator.generate_fun()
Example #2
0
def test_get_back(constats_enabled):
    x = Symbol('x')
    basis_functions = [
        x, exp, log, sin
    ]  #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    for i in range(10):
        fun_generator = DatasetCreator(basis_functions,
                                       max_linear_terms=4,
                                       constants_enabled=constats_enabled)
        simpy_output, dictionary, dictionary_clean = fun_generator.generate_fun(
        )
        separated_dict = tokenization.extract_terms(dictionary_clean)
        numberized_dict, mapping = tokenization.numberize_terms(separated_dict)
        final_seq = tokenization.flatten_seq(numberized_dict, mapping=mapping)
        ori_fun = lambdify(x, simpy_output, 'numpy')
        try:
            get_back = lambdify(x, tokenization.get_string(final_seq), 'numpy')
        except:
            pdb.set_trace()
        input_x = np.arange(-3, 3, 0.1)
        if not constats_enabled:
            ori_y = np.nan_to_num(
                fun_generator.handling_nan_evaluation(input_x, ori_fun))
            new_y = np.nan_to_num(
                fun_generator.handling_nan_evaluation(input_x, get_back))
            assert np.all(ori_y == new_y)
Example #3
0
def test_generate_X_and_Y():
    x = Symbol('x')
    basis_functions = [x,exp,log,sin] #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    fun_generator = DatasetCreator(basis_functions,max_linear_terms=4)
    string, _, _ =  fun_generator.generate_fun()
    support = np.arange(1,20)
    y = fun_generator.evaluate_function(support,string)
Example #4
0
def test_compare_speed_with_constants(constats_enabled):
    for i in range(100):
        support = np.arange(0.1,3.1,0.1)
        x = Symbol('x')
        basis_functions = [x,sin,log,exp]
        creator_object = DatasetCreator(basis_functions,max_linear_terms=1, max_binomial_terms=1, max_compositions=1,
                        max_N_terms=1,division_on=False, constants_enabled=constats_enabled, random_terms=True)
        numerical, dictionary = creator_object.generate_batch(support,1)
Example #5
0
def test_luca_dataset_creator(constats_enabled):
    support = np.arange(0.1,3.1,0.1)
    x = Symbol('x')
    basis_functions = [x,sin,log,exp]
    creator_object = DatasetCreator(basis_functions,max_linear_terms=2, max_binomial_terms=1, max_compositions=1,
                    max_N_terms=0,division_on=False, constants_enabled=constats_enabled, random_terms=False)
    res = creator_object.generate_set(support,25)
    print(res)
Example #6
0
def test_separator():
    x = Symbol('x')
    basis_functions = [
        x, exp, log, sin
    ]  #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    fun_generator = DatasetCreator(basis_functions, max_linear_terms=4)
    string, dictionary, _ = fun_generator.generate_fun()
    separated_dict = tokenization.extract_terms(dictionary)
    print(separated_dict['Single'])
Example #7
0
def test_no_terms_are_zoo():
    for i in range(100):
        x = Symbol('x')
        basis_functions = [x,exp,log,sin] #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
        fun_generator = DatasetCreator(basis_functions,max_linear_terms=4)
        string, dictionary, _ =  fun_generator.generate_fun()
        for terms in dictionary.values():
            for term in terms:
                assert term != zoo
Example #8
0
def test_generate_batch(X_noise,Y_noise):
    x = Symbol('x')
    basis_functions = [x,exp,log,sin] #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    fun_generator = DatasetCreator(basis_functions,max_linear_terms=1, max_compositions=2)
    number_to_generate = 1
    support = np.arange(-20,20,0.1)
    inp, out, real_dict = fun_generator.generate_batch(support, number_to_generate, X_noise=X_noise, Y_noise=Y_noise, return_real_dict=True)
    print(out)
    print(real_dict)
Example #9
0
def test_final():
    x = Symbol('x')
    basis_functions = [
        x, exp, log, sin
    ]  #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    fun_generator = DatasetCreator(basis_functions, max_linear_terms=4)
    string, dictionary, _ = fun_generator.generate_fun()
    separated_dict = tokenization.extract_terms(dictionary)
    numberized_dict, mapping = tokenization.numberize_terms(separated_dict)
    final_seq = tokenization.flatten_seq(numberized_dict, mapping=mapping)
    print(final_seq)
    print("hello")
Example #10
0
def test_batch():
    try:
        x = Symbol('x')
        basis_functions = [
            x, exp, log, sin
        ]  #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
        fun_generator = DatasetCreator(basis_functions, max_linear_terms=4)
        support = np.arange(-3, 3, 0.1)
        string, dictionary = fun_generator.generate_batch(support, 20)
        result = tokenization.pipeline(dictionary)
    except:
        pdb.set_trace()
Example #11
0
def test_check_for_plus():
    support = np.arange(0.1, 3.1, 0.1)
    for i in range(100):
        x = Symbol('x')
        basis_functions = [
            x, exp, log, sin
        ]  #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
        fun_generator = DatasetCreator(basis_functions,
                                       max_linear_terms=1,
                                       max_binomial_terms=1,
                                       max_compositions=1,
                                       max_N_terms=0,
                                       division_on=False)
        string, dictionary = fun_generator.generate_batch(support, 1)
        res = tokenization.get_string(tokenization.pipeline(dictionary)[0])
        if res:
            assert res[-1] != "+"
Example #12
0
def test_forecast_len():
    x = Symbol('x')
    basis_functions = [x,exp,log,sin] #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    fun_generator = DatasetCreator(basis_functions,max_linear_terms=4)
    string, dictionary =  fun_generator.generate_fun()
    utils.forecast_len(dictionary)
Example #13
0
def test_domain_calculator():
    x = Symbol('x')
    basis_functions = [x,exp,log,sin] #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    fun_generator = DatasetCreator(basis_functions,max_linear_terms=4)
    string, dictionary, _ =  fun_generator.generate_fun()
    fun_generator.compute_admissible_domain(string)
Example #14
0
def test_single_function_generation(constats_enabled):
    x = Symbol('x')
    basis_functions = [x,exp,log,sin] #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    fun_generator = DatasetCreator(basis_functions,max_linear_terms=4, constants_enabled=constats_enabled,max_compositions=4)
    string, dictionary, dictionary_cleaned =  fun_generator.generate_fun()
Example #15
0
def test_assert_assertion():
    x = Symbol
    basis_functions = [x,exp,log,sin] #Pay attention as the order is indeed important, for testing we put it in alphabetical order (apart from x)
    with pytest.raises(TypeError):
        fun_generator = DatasetCreator(basis_functions)