def _set_statistics(self): """ Private method that is used withn the statistics routines. """ if self.statistics_object is None: if self.method != 'numerical-integration' and self.dimensions <= 6 and self.highest_order <= MAXIMUM_ORDER_FOR_STATS: quad = Quadrature(parameters=self.parameters, basis=Basis('tensor-grid', orders= np.array(self.parameters_order) + 1), \ mesh='tensor-grid', points=None) quad_pts, quad_wts = quad.get_points_and_weights() poly_vandermonde_matrix = self.get_poly(quad_pts) else: poly_vandermonde_matrix = self.get_poly(self._quadrature_points) quad_pts, quad_wts = self.get_points_and_weights() if self.highest_order <= MAXIMUM_ORDER_FOR_STATS: self.statistics_object = Statistics(self.parameters, self.basis, self.coefficients, quad_pts, \ quad_wts, poly_vandermonde_matrix, max_sobol_order=self.highest_order) else: self.statistics_object = Statistics(self.parameters, self.basis, self.coefficients, quad_pts, \ quad_wts, poly_vandermonde_matrix, max_sobol_order=MAXIMUM_ORDER_FOR_STATS)
def getStatistics(self, light=None, max_sobol_order=None): """ Creates an instance of the Statistics class. :param Poly self: An instance of the Poly class. :param string quadratureRule: Two options exist for this string. The user can use 'qmc' for a distribution specific Monte Carlo (QMC) or they can use 'tensor grid' for standard tensor product grid. Typically, if the number of dimensions is less than 8, the tensor grid is the default option selected. :return: A Statistics object. """ if light is None: evals = self.getPolynomial(self.quadraturePoints) return Statistics(self.coefficients, self.basis, self.parameters, self.quadraturePoints, self.quadratureWeights, evals, max_sobol_order) else: return Statistics(self.coefficients, self.basis, self.parameters, max_sobol_order=max_sobol_order)
def _set_statistics(self): """ Private method that is used within the statistics routines. """ if self.statistics_object is None: if hasattr(self, 'inv_R_Psi'): # quad_pts, quad_wts = self.quadrature.get_points_and_weights() N_quad = 20000 quad_pts = self.corr.get_correlated_samples(N=N_quad) quad_wts = 1.0 / N_quad * np.ones(N_quad) poly_vandermonde_matrix = self.get_poly(quad_pts) elif self.method != 'numerical-integration' and self.dimensions <= 6 and self.highest_order <= MAXIMUM_ORDER_FOR_STATS: quad = Quadrature(parameters=self.parameters, basis=Basis('tensor-grid', orders= np.array(self.parameters_order) + 1), \ mesh='tensor-grid', points=None) quad_pts, quad_wts = quad.get_points_and_weights() poly_vandermonde_matrix = self.get_poly(quad_pts) elif self.mesh == 'monte-carlo': quad = Quadrature(parameters=self.parameters, basis=self.basis, mesh=self.mesh, points=None, oversampling=10.0) quad_pts, quad_wts = quad.get_points_and_weights() N_quad = len(quad_wts) quad_wts = 1.0 / N_quad * np.ones(N_quad) poly_vandermonde_matrix = self.get_poly(quad_pts) else: poly_vandermonde_matrix = self.get_poly( self._quadrature_points) quad_pts, quad_wts = self.get_points_and_weights() if self.highest_order <= MAXIMUM_ORDER_FOR_STATS and ( self.basis.basis_type.lower() == 'total-order' or self.basis.basis_type.lower() == 'hyperbolic-basis'): self.statistics_object = Statistics(self.parameters, self.basis, self.coefficients, quad_pts, \ quad_wts, poly_vandermonde_matrix, max_sobol_order=self.highest_order) else: self.statistics_object = Statistics(self.parameters, self.basis, self.coefficients, quad_pts, \ quad_wts, poly_vandermonde_matrix, max_sobol_order=MAXIMUM_ORDER_FOR_STATS)
class Poly(object): """ Definition of a polynomial object. :param list parameters: A list of parameters, where each element of the list is an instance of the Parameter class. :param Basis basis: An instance of the Basis class corresponding to the multi-index set used. :param str method: The method used for computing the coefficients. Should be one of: ``compressive-sensing``, ``numerical-integration``, ``least-squares``, ``least-squares-with-gradients``, ``minimum-norm``. :param dict sampling_args: Optional arguments centered around the specific sampling strategy. :string mesh: Avaliable options are: ``monte-carlo``, ``sparse-grid``, ``tensor-grid``, ``induced``, or ``user-defined``. Note that when the ``sparse-grid`` option is invoked, the sparse pseudospectral approximation method [1] is the adopted. One can think of this as being the correct way to use sparse grids in the context of polynomial chaos [2] techniques. :string subsampling-algorithm: The ``subsampling-algorithm`` input refers to the optimisation technique for subsampling. In the aforementioned four sampling strategies, we generate a logarithm factor of samples above the required amount and prune down the samples using an optimisation technique (see [1]). Existing optimisation strategies include: ``qr``, ``lu``, ``svd``, ``newton``. These refer to QR with column pivoting [2], LU with row pivoting [3], singular value decomposition with subset selection [2] and a convex relaxation via Newton's method for determinant maximization [4]. Note that if the ``tensor-grid`` option is selected, then subsampling will depend on whether the Basis argument is a total order index set, hyperbolic basis or a tensor order index set. :float sampling-ratio: Denotes the extent of undersampling or oversampling required. For values equal to unity (default), the number of rows and columns of the associated Vandermonde-type matrix are equal. :numpy.ndarray sample-points: A numpy ndarray with shape (number_of_observations, dimensions) that corresponds to a set of sample points over the parameter space. :numpy.ndarray sample-outputs: A numpy ndarray with shape (number_of_observations, 1) that corresponds to model evaluations at the sample points. Note that if ``sample-points`` is provided as an input, then the code expects ``sample-outputs`` too. :numpy.ndarray sample-gradients: A numpy ndarray with shape (number_of_observations, dimensions) that corresponds to a set of sample gradient values over the parameter space. :param dict solver_args: Optional arguments centered around the specific solver used for computing the coefficients. :numpy.ndarray noise-level: The noise level to be used. Can take in both scalar- and vector-valued inputs. :bool verbose: The default value is set to ``False``; when set to ``True`` details on the convergence of the solution will be provided. Note for direct methods, this will simply output the condition number of the matrix. **Sample constructor initialisations**:: import numpy as np from equadratures import * # Subsampling from a tensor grid param = Parameter(distribution='uniform', lower=-1., upper=1., order=3) basis = Basis('total order') poly = Poly(parameters=[param, param], basis=basis, method='least-squares' , sampling_args={'mesh':'tensor-grid', 'subsampling-algorithm':'svd', 'sampling-ratio':1.0}) # User-defined data with compressive sensing X = np.loadtxt('inputs.txt') y = np.loadtxt('outputs.txt') param = Parameter(distribution='uniform', lower=-1., upper=1., order=3) basis = Basis('total order') poly = Poly([param, param], basis, method='compressive-sensing', sampling_args={'sample-points':X_red, \ 'sample-outputs':Y_red}) # Using a sparse grid param = Parameter(distribution='uniform', lower=-1., upper=1., order=3) basis = Basis('sparse-grid', level=7, growth_rule='exponential') poly = Poly(parameters=[param, param], basis=basis, method='numerical-integration') **References** 1. Constantine, P. G., Eldred, M. S., Phipps, E. T., (2012) Sparse Pseudospectral Approximation Method. Computer Methods in Applied Mechanics and Engineering. 1-12. `Paper <https://www.sciencedirect.com/science/article/pii/S0045782512000953>`__ 2. Xiu, D., Karniadakis, G. E., (2002) The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), `Paper <https://epubs.siam.org/doi/abs/10.1137/S1064827501387826?journalCode=sjoce3>`__ 3. Seshadri, P., Iaccarino, G., Ghisu, T., (2018) Quadrature Strategies for Constructing Polynomial Approximations. Uncertainty Modeling for Engineering Applications. Springer, Cham, 2019. 1-25. `Preprint <https://arxiv.org/pdf/1805.07296.pdf>`__ 4. Seshadri, P., Narayan, A., Sankaran M., (2017) Effectively Subsampled Quadratures for Least Squares Polynomial Approximations. SIAM/ASA Journal on Uncertainty Quantification, 5(1). `Paper <https://epubs.siam.org/doi/abs/10.1137/16M1057668>`__ 5. Bos, L., De Marchi, S., Sommariva, A., Vianello, M., (2010) Computing Multivariate Fekete and Leja points by Numerical Linear Algebra. SIAM Journal on Numerical Analysis, 48(5). `Paper <https://epubs.siam.org/doi/abs/10.1137/090779024>`__ 6. Joshi, S., Boyd, S., (2009) Sensor Selection via Convex Optimization. IEEE Transactions on Signal Processing, 57(2). `Paper <https://ieeexplore.ieee.org/document/4663892>`__ """ def __init__(self, parameters, basis, method=None, sampling_args=None, solver_args=None): try: len(parameters) except TypeError: parameters = [parameters] self.parameters = parameters self.basis = deepcopy(basis) self.method = method self.sampling_args = sampling_args self.solver_args = solver_args self.dimensions = len(parameters) self.orders = [] self.gradient_flag = 0 for i in range(0, self.dimensions): self.orders.append(self.parameters[i].order) if not self.basis.orders: self.basis.set_orders(self.orders) # Initialize some default values! self.inputs = None self.outputs = None self.subsampling_algorithm_name = None self.sampling_ratio = 1.0 self.statistics_object = None self.parameters_order = [ parameter.order for parameter in self.parameters ] self.highest_order = np.max(self.parameters_order) if self.method is not None: if self.method == 'numerical-integration' or self.method == 'integration': self.mesh = self.basis.basis_type elif self.method == 'least-squares': self.mesh = 'tensor-grid' elif self.method == 'least-squares-with-gradients': self.gradient_flag = 1 self.mesh = 'tensor-grid' elif self.method == 'compressed-sensing' or self.method == 'compressive-sensing': self.mesh = 'monte-carlo' elif self.method == 'minimum-norm': self.mesh = 'monte-carlo' # Now depending on user inputs, override these default values! sampling_args_flag = 0 if self.sampling_args is not None: if 'mesh' in sampling_args: self.mesh = sampling_args.get('mesh') sampling_args_flag = 1 if 'sampling-ratio' in sampling_args: self.sampling_ratio = float( sampling_args.get('sampling-ratio')) sampling_args_flag = 1 if 'subsampling-algorithm' in sampling_args: self.subsampling_algorithm_name = sampling_args.get( 'subsampling-algorithm') sampling_args_flag = 1 if 'sample-points' in sampling_args: self.inputs = sampling_args.get('sample-points') sampling_args_flag = 1 self.mesh = 'user-defined' if 'sample-outputs' in sampling_args: self.outputs = sampling_args.get('sample-outputs') sampling_args_flag = 1 if 'sample-gradients' in sampling_args: self.gradients = sampling_args.get('sample-gradients') sampling_args_flag = 1 elif sampling_args_flag == 0: raise ( ValueError, 'An input value that you have specified is likely incorrect. Sampling arguments include: mesh, sampling-ratio, subsampling-algorithm, sample-points, sample-outputs and sample-gradients.' ) self._set_solver() self._set_subsampling_algorithm() self._set_points_and_weights() else: print('WARNING: Method not declared.') def _set_parameters(self, parameters): """ Private function that sets the parameters. Required by the Correlated class. :param Poly self: An instance of the Poly object. """ self.parameters = parameters self._set_points_and_weights() def get_parameters(self): """ Returns the list of parameters :param Poly self: An instance of the Poly object. """ return self.parameters def get_summary(self, filename=None, tosay=False): """ A simple utility that returns file summarising what the polynomial approximation has determined. :param Poly self: An instance of the Poly object. :param str filename: The filename to write to. :param bool tosay: True will replace "-" signs with "minus" when writing to file for compatibility with os.say(). """ prec = '{:.3g}' if self.dimensions == 1: parameter_string = str('parameter.') else: parameter_string = str('parameters.') introduction = str('Your problem has been defined by ' + str(self.dimensions) + ' ' + parameter_string) added = str('Their distributions are given as follows:') for i in range(0, self.dimensions): added_new = ('\nParameter ' + str(i + 1) + ' ' + str(self.parameters[i].get_description())) if i == 0: added = introduction + added_new else: added = added + added_new if self.statistics_object is not None: mean_value, var_value = self.get_mean_and_variance() X = self.get_points() y_eval = self.get_polyfit(X) y_valid = self._model_evaluations a, b, r, _, _ = st.linregress(y_eval.flatten(), y_valid.flatten()) r2 = r**2 statistics = '\n \nA summary of computed output statistics is given below:\nThe mean is estimated to be '+ prec.format(mean_value) +\ ' while the variance is ' + prec.format(var_value) +'.\nFor the data avaliable, the polynomial approximation had a r square value of '+prec.format(r2)+'.' if self.dimensions > 1: sobol_indices_array = np.argsort( self.get_total_sobol_indices()) final_value = sobol_indices_array[-1] + 1 statistics_extra = str( '\nAdditionally, the most important parameter--based on the total Sobol indices--was found to be parameter ' + str(final_value) + '.') statistics = statistics + statistics_extra added = added + statistics if (tosay is True): added = added.replace('e-', 'e minus') added = added.replace('minus0', 'minus') if filename is None: filename = 'effective-quadratures-output.txt' output_file = open(filename, 'w') output_file.write(added) output_file.close() def _set_subsampling_algorithm(self): """ Private function that sets the subsampling algorithm based on the user-defined method. :param Poly self: An instance of the Poly object. """ polysubsampling = Subsampling(self.subsampling_algorithm_name) self.subsampling_algorithm_function = polysubsampling.get_subsampling_method( ) def _set_solver(self): """ Private function that sets the solver depending on the user-defined method. :param Poly self: An instance of the Poly object. """ polysolver = Solver(self.method, self.solver_args) self.solver = polysolver.get_solver() def _set_points_and_weights(self): """ Private function that sets the quadrature points. :param Poly self: An instance of the Poly object. """ self.quadrature = Quadrature(parameters=self.parameters, basis=self.basis, \ points=self.inputs, mesh=self.mesh) quadrature_points, quadrature_weights = self.quadrature.get_points_and_weights( ) if self.subsampling_algorithm_name is not None: P = self.get_poly(quadrature_points) W = np.mat(np.diag(np.sqrt(quadrature_weights))) A = W * P.T self.A = A mm, nn = A.shape m_refined = int(np.round(self.sampling_ratio * nn)) z = self.subsampling_algorithm_function(A, m_refined) self._quadrature_points = quadrature_points[z, :] self._quadrature_weights = quadrature_weights[z] / np.sum( quadrature_weights[z]) else: self._quadrature_points = quadrature_points self._quadrature_weights = quadrature_weights P = self.get_poly(quadrature_points) W = np.mat(np.diag(np.sqrt(quadrature_weights))) A = W * P.T self.A = A def get_model_evaluations(self): """ Returns the points at which the model was evaluated at. :param Poly self: An instance of the Poly class. """ return self._model_evaluations def get_mean_and_variance(self): """ Computes the mean and variance of the model. :param Poly self: An instance of the Poly class. :return: **mean**: The approximated mean of the polynomial fit; output as a float. **variance**: The approximated variance of the polynomial fit; output as a float. """ self._set_statistics() return self.statistics_object.get_mean( ), self.statistics_object.get_variance() def get_skewness_and_kurtosis(self): """ Computes the skewness and kurtosis of the model. :param Poly self: An instance of the Poly class. :return: **skewness**: The approximated skewness of the polynomial fit; output as a float. **kurtosis**: The approximated kurtosis of the polynomial fit; output as a float. """ self._set_statistics() return self.statistics_object.get_skewness( ), self.statistics_object.get_kurtosis() def _set_statistics(self): """ Private method that is used withn the statistics routines. """ if self.statistics_object is None: if self.method != 'numerical-integration' and self.dimensions <= 6 and self.highest_order <= MAXIMUM_ORDER_FOR_STATS: quad = Quadrature(parameters=self.parameters, basis=Basis('tensor-grid', orders= np.array(self.parameters_order) + 1), \ mesh='tensor-grid', points=None) quad_pts, quad_wts = quad.get_points_and_weights() poly_vandermonde_matrix = self.get_poly(quad_pts) else: poly_vandermonde_matrix = self.get_poly( self._quadrature_points) quad_pts, quad_wts = self.get_points_and_weights() if self.highest_order <= MAXIMUM_ORDER_FOR_STATS: self.statistics_object = Statistics(self.parameters, self.basis, self.coefficients, quad_pts, \ quad_wts, poly_vandermonde_matrix, max_sobol_order=self.highest_order) else: self.statistics_object = Statistics(self.parameters, self.basis, self.coefficients, quad_pts, \ quad_wts, poly_vandermonde_matrix, max_sobol_order=MAXIMUM_ORDER_FOR_STATS) def get_sobol_indices(self, order): """ Computes the Sobol' indices. :param Poly self: An instance of the Poly class. :param int highest_sobol_order_to_compute: The order of the Sobol' indices required. :return: **sobol_indices**: A dict comprising of Sobol' indices and constitutent mixed orders of the parameters. """ self._set_statistics() return self.statistics_object.get_sobol(order) def get_total_sobol_indices(self): """ Computes the total Sobol' indices. :param Poly self: An instance of the Poly class. :return: **total_sobol_indices**: Sobol """ self._set_statistics() return self.statistics_object.get_sobol_total() def get_conditional_skewness_indices(self, order): """ Computes the skewness indices. :param Poly self: An instance of the Poly class. :param int order: The highest order of the skewness indices required. :return: **skewness_indices**: A dict comprising of skewness indices and constitutent mixed orders of the parameters. """ self._set_statistics() return self.statistics_object.get_conditional_skewness(order) def get_conditional_kurtosis_indices(self, order): """ Computes the kurtosis indices. :param Poly self: An instance of the Poly class. :param int order: The highest order of the kurtosis indices required. :return: **kurtosis_indices**: A dict comprising of kurtosis indices and constitutent mixed orders of the parameters. """ self._set_statistics() return self.statistics_object.get_conditional_kurtosis(order) def set_model(self, model=None, model_grads=None): """ Computes the coefficients of the polynomial via the method selected. :param Poly self: An instance of the Poly class. :param callable model: The function that needs to be approximated. In the absence of a callable function, the input can be the function evaluated at the quadrature points. :param callable model_grads: The gradient of the function that needs to be approximated. In the absence of a callable gradient function, the input can be a matrix of gradient evaluations at the quadrature points. """ if (model is None) and (self.outputs is not None): self._model_evaluations = self.outputs else: if callable(model): y = evaluate_model(self._quadrature_points, model) else: y = model assert (y.shape[0] == self._quadrature_points.shape[0]) if y.shape[1] != 1: raise (ValueError, 'model values should be a column vector.') self._model_evaluations = y if self.gradient_flag == 1: if (model_grads is None) and (self.gradients is not None): grad_values = self.gradients else: if callable(model_grads): grad_values = evaluate_model_gradients( self._quadrature_points, model_grads, 'matrix') else: grad_values = model_grads p, q = grad_values.shape self._gradient_evaluations = np.zeros((p * q, 1)) W = np.diag(np.sqrt(self._quadrature_weights)) counter = 0 for j in range(0, q): for i in range(0, p): self._gradient_evaluations[counter] = W[ i, i] * grad_values[i, j] counter = counter + 1 del grad_values self.statistics_object = None self._set_coefficients() def _set_coefficients(self, user_defined_coefficients=None): """ Computes the polynomial approximation coefficients. :param Poly self: An instance of the Poly object. :param numpy.ndarray user_defined_coefficients: A numpy.ndarray of shape (N, 1) where N corresponds to the N coefficients provided by the user """ # Check to ensure that if there any NaNs, a different basis must be used and solver must be changed # to least squares! if user_defined_coefficients is not None: self.coefficients = user_defined_coefficients return indices_with_nans = np.argwhere(np.isnan(self._model_evaluations))[:, 0] if len(indices_with_nans) is not 0: print( 'WARNING: One or more of your model evaluations have resulted in an NaN. We found ' + str(len(indices_with_nans)) + ' NaNs out of ' + str(len(self._model_evaluations)) + '.') print( 'The code will now use a least-squares technique that will ignore input-output pairs of your model that have NaNs. This will likely compromise computed statistics.' ) self.inputs = np.delete(self._quadrature_points, indices_with_nans, axis=0) self.outputs = np.delete(self._model_evaluations, indices_with_nans, axis=0) self.subsampling_algorithm_name = None number_of_basis_to_prune_down = self.basis.cardinality - len( self.outputs) if number_of_basis_to_prune_down > 0: self.basis.prune( number_of_basis_to_prune_down + self.dimensions) # To make it an over-determined system! self.method = 'least-squares' self.mesh = 'user-defined' self._set_solver() self._set_points_and_weights() self.set_model(self.outputs) if self.mesh == 'sparse-grid': counter = 0 multi_index = [] coefficients = np.empty([1]) multindices = np.empty([1, self.dimensions]) for tensor in self.quadrature.list: P = self.get_poly(tensor.points, tensor.basis.elements) W = np.diag(np.sqrt(tensor.weights)) A = np.dot(W, P.T) _, _, counts = np.unique(np.vstack( [tensor.points, self._quadrature_points]), axis=0, return_index=True, return_counts=True) indices = [i for i in range(0, len(counts)) if counts[i] == 2] b = np.dot(W, self._model_evaluations[indices]) del counts, indices coefficients_i = self.solver( A, b) * self.quadrature.sparse_weights[counter] multindices_i = tensor.basis.elements coefficients = np.vstack([coefficients_i, coefficients]) multindices = np.vstack([multindices_i, multindices]) counter = counter + 1 multindices = np.delete(multindices, multindices.shape[0] - 1, 0) coefficients = np.delete(coefficients, coefficients.shape[0] - 1) unique_indices, indices, counts = np.unique(multindices, axis=0, return_index=True, return_counts=True) coefficients_final = np.zeros((unique_indices.shape[0], 1)) for i in range(0, unique_indices.shape[0]): for j in range(0, multindices.shape[0]): if np.array_equiv(unique_indices[i, :], multindices[j, :]): coefficients_final[ i] = coefficients_final[i] + coefficients[j] self.coefficients = coefficients_final self.basis.elements = unique_indices else: P = self.get_poly(self._quadrature_points) W = np.diag(np.sqrt(self._quadrature_weights)) A = np.dot(W, P.T) b = np.dot(W, self._model_evaluations) if self.gradient_flag == 1: # Now, we can reduce the number of rows! dP = self.get_poly_grad(self._quadrature_points) C = cell2matrix(dP, W) G = np.vstack([A, C]) r = np.linalg.matrix_rank(G) m, n = A.shape print( 'Gradient computation: The rank of the stacked matrix is ' + str(r) + '.') print('The number of unknown basis terms is ' + str(n)) if n > r: print( 'WARNING: Please increase the number of samples; one way to do this would be to increase the sampling-ratio.' ) self.coefficients = self.solver(A, b, C, self._gradient_evaluations) else: self.coefficients = self.solver(A, b) def get_multi_index(self): """ Returns the multi-index set of the basis. :param Poly self: An instance of the Poly object. :return: **multi_indices**: A numpy.ndarray of the coefficients with size (cardinality_of_basis, dimensions). """ return self.basis.elements def get_coefficients(self): """ Returns the coefficients of the polynomial approximation. :param Poly self: An instance of the Poly object. :return: **coefficients**: A numpy.ndarray of the coefficients with size (number_of_coefficients, 1). """ return self.coefficients def get_points(self): """ Returns the samples based on the sampling strategy. :param Poly self: An instance of the Poly object. :return: **points**: A numpy.ndarray of sampled quadrature points with shape (number_of_samples, dimension). """ return self._quadrature_points def get_weights(self): """ Computes quadrature weights. :param Poly self: An instance of the Poly class. :return: **weights**: A numpy.ndarray of the corresponding quadrature weights with shape (number_of_samples, 1). """ return self._quadrature_weights def get_points_and_weights(self): """ Returns the samples and weights based on the sampling strategy. :param Poly self: An instance of the Poly object. :return: **x**: A numpy.ndarray of sampled quadrature points with shape (number_of_samples, dimension). **w**: A numpy.ndarray of the corresponding quadrature weights with shape (number_of_samples, 1). """ return self._quadrature_points, self._quadrature_weights def get_polyfit(self, stack_of_points): """ Evaluates the the polynomial approximation of a function (or model data) at prescribed points. :param Poly self: An instance of the Poly class. :param numpy.ndarray stack_of_points: An ndarray with shape (number_of_observations, dimensions) at which the polynomial fit must be evaluated at. :return: **p**: A numpy.ndarray of shape (1, number_of_observations) corresponding to the polynomial approximation of the model. """ N = len(self.coefficients) return np.dot( self.get_poly(stack_of_points).T, self.coefficients.reshape(N, 1)) def get_polyfit_grad(self, stack_of_points, dim_index=None): """ Evaluates the gradient of the polynomial approximation of a function (or model data) at prescribed points. :param Poly self: An instance of the Poly class. :param numpy.ndarray stack_of_points: An ndarray with shape (number_of_observations, dimensions) at which the polynomial fit approximation's gradient must be evaluated at. :return: **p**: A numpy.ndarray of shape (dimensions, number_of_observations) corresponding to the polynomial gradient approximation of the model. """ N = len(self.coefficients) if stack_of_points.ndim == 1: no_of_points = 1 else: no_of_points, _ = stack_of_points.shape H = self.get_poly_grad(stack_of_points, dim_index=dim_index) grads = np.zeros((self.dimensions, no_of_points)) if self.dimensions == 1: return np.dot(self.coefficients.reshape(N, ), H) for i in range(0, self.dimensions): grads[i, :] = np.dot(self.coefficients.reshape(N, ), H[i]) return grads def get_polyfit_hess(self, stack_of_points): """ Evaluates the hessian of the polynomial approximation of a function (or model data) at prescribed points. :param Poly self: An instance of the Poly class. :param numpy.ndarray stack_of_points: An ndarray with shape (number_of_observations, dimensions) at which the polynomial fit approximation's Hessian must be evaluated at. :return: **h**: A numpy.ndarray of shape (dimensions, dimensions, number_of_observations) corresponding to the polynomial Hessian approximation of the model. """ if stack_of_points.ndim == 1: no_of_points = 1 else: no_of_points, _ = stack_of_points.shape H = self.get_poly_hess(stack_of_points) if self.dimensions == 1: return np.dot(self.coefficients.T, H) hess = np.zeros((self.dimensions, self.dimensions, no_of_points)) for i in range(0, self.dimensions): for j in range(0, self.dimensions): hess[i, j, :] = np.dot(self.coefficients.T, H[i * self.dimensions + j]) return hess def get_polyfit_function(self): """ Returns a callable polynomial approximation of a function (or model data). :param Poly self: An instance of the Poly class. :return: A callable function. """ N = len(self.coefficients) return lambda x: np.dot( self.get_poly(x).T, self.coefficients.reshape(N, 1)) def get_polyfit_grad_function(self): """ Returns a callable for the gradients of the polynomial approximation of a function (or model data). :param Poly self: An instance of the Poly class. :return: A callable function. """ return lambda x: self.get_polyfit_grad(x) def get_polyfit_hess_function(self): """ Returns a callable for the hessian of the polynomial approximation of a function (or model data). :param Poly self: An instance of the Poly class. :return: A callable function. """ return lambda x: self.get_polyfit_hess(x) def get_poly(self, stack_of_points, custom_multi_index=None): """ Evaluates the value of each polynomial basis function at a set of points. :param Poly self: An instance of the Poly class. :param numpy.ndarray stack_of_points: An ndarray with shape (number of observations, dimensions) at which the polynomial must be evaluated. :return: **polynomial**: A numpy.ndarray of shape (cardinality, number_of_observations) corresponding to the polynomial basis function evaluations at the stack_of_points. """ if custom_multi_index is None: basis = self.basis.elements else: basis = custom_multi_index basis_entries, dimensions = basis.shape if stack_of_points.ndim == 1: no_of_points = 1 else: no_of_points, _ = stack_of_points.shape p = {} # Save time by returning if univariate! if dimensions == 1: poly, _, _ = self.parameters[0]._get_orthogonal_polynomial( stack_of_points, int(np.max(basis))) return poly else: for i in range(0, dimensions): if len(stack_of_points.shape) == 1: stack_of_points = np.array([stack_of_points]) p[i], _, _ = self.parameters[i]._get_orthogonal_polynomial( stack_of_points[:, i], int(np.max(basis[:, i]))) # One loop for polynomials polynomial = np.ones((basis_entries, no_of_points)) for k in range(dimensions): basis_entries_this_dim = basis[:, k].astype(int) polynomial *= p[k][basis_entries_this_dim] return polynomial def get_poly_grad(self, stack_of_points, dim_index=None): """ Evaluates the gradient for each of the polynomial basis functions at a set of points, with respect to each input variable. :param Poly self: An instance of the Poly class. :param numpy.ndarray stack_of_points: An ndarray with shape (number_of_observations, dimensions) at which the gradient must be evaluated. :return: **Gradients**: A list with d elements, where d corresponds to the dimension of the problem. Each element is a numpy.ndarray of shape (cardinality, number_of_observations) corresponding to the gradient polynomial evaluations at the stack_of_points. """ # "Unpack" parameters from "self" basis = self.basis.elements basis_entries, dimensions = basis.shape if len(stack_of_points.shape) == 1: if dimensions == 1: # a 1d array of inputs, and each input is 1d stack_of_points = np.reshape(stack_of_points, (len(stack_of_points), 1)) else: # a 1d array representing 1 point, in multiple dimensions! stack_of_points = np.array([stack_of_points]) no_of_points, _ = stack_of_points.shape p = {} dp = {} # Save time by returning if univariate! if dimensions == 1: _, dpoly, _ = self.parameters[0]._get_orthogonal_polynomial( stack_of_points, int(np.max(basis))) return dpoly else: for i in range(0, dimensions): if len(stack_of_points.shape) == 1: stack_of_points = np.array([stack_of_points]) p[i], dp[i], _ = self.parameters[i]._get_orthogonal_polynomial( stack_of_points[:, i], int(np.max(basis[:, i]))) # One loop for polynomials R = [] if dim_index is None: dim_index = range(dimensions) for v in range(dimensions): if not (v in dim_index): R.append(np.zeros((basis_entries, no_of_points))) else: polynomialgradient = np.ones((basis_entries, no_of_points)) for k in range(dimensions): basis_entries_this_dim = basis[:, k].astype(int) if k == v: polynomialgradient *= dp[k][basis_entries_this_dim] else: polynomialgradient *= p[k][basis_entries_this_dim] R.append(polynomialgradient) return R def get_poly_hess(self, stack_of_points): """ Evaluates the Hessian for each of the polynomial basis functions at a set of points, with respect to each input variable. :param Poly self: An instance of the Poly class. :param numpy.ndarray stack_of_points: An ndarray with shape (number_of_observations, dimensions) at which the Hessian must be evaluated. :return: **Hessian**: A list with d^2 elements, where d corresponds to the dimension of the model. Each element is a numpy.ndarray of shape (cardinality, number_of_observations) corresponding to the hessian polynomial evaluations at the stack_of_points. """ # "Unpack" parameters from "self" basis = self.basis.elements basis_entries, dimensions = basis.shape if stack_of_points.ndim == 1: no_of_points = 1 else: no_of_points, _ = stack_of_points.shape p = {} dp = {} d2p = {} # Save time by returning if univariate! if dimensions == 1: _, _, d2poly = self.parameters[0]._get_orthogonal_polynomial( stack_of_points, int(np.max(basis))) return d2poly else: for i in range(0, dimensions): if len(stack_of_points.shape) == 1: stack_of_points = np.array([stack_of_points]) p[i], dp[i], d2p[i] = self.parameters[ i]._get_orthogonal_polynomial(stack_of_points[:, i], int(np.max(basis[:, i]) + 1)) H = [] for w in range(0, dimensions): gradDirection1 = w for v in range(0, dimensions): gradDirection2 = v polynomialhessian = np.zeros((basis_entries, no_of_points)) for i in range(0, basis_entries): temp = np.ones((1, no_of_points)) for k in range(0, dimensions): if k == gradDirection1 == gradDirection2: polynomialhessian[i, :] = d2p[k][int( basis[i, k])] * temp elif k == gradDirection1: polynomialhessian[i, :] = dp[k][int( basis[i, k])] * temp elif k == gradDirection2: polynomialhessian[i, :] = dp[k][int( basis[i, k])] * temp else: polynomialhessian[i, :] = p[k][int( basis[i, k])] * temp temp = polynomialhessian[i, :] H.append(polynomialhessian) return H