Example #1
0
    def test_all_equal(self):
        eq = Equilateral(10, -1, 1)
        compare_dist = -1

        for x in range(0, 10):
            base_class = eq.encode(x)
            for y in range(0, 10):
                if x != y:
                    otherClass = eq.encode(y)
                    dist = distance.euclidean(base_class, otherClass)
                    if compare_dist < 0:
                        compare_dist = dist
                    else:
                        self.assertAlmostEqual(dist, compare_dist, 7)
Example #2
0
    def norm_col_equilateral(self, data_set, col, classes, normalized_low, normalized_high):
        """ Normalize a column using equilateral.  The classes parameter contains a map of the unique items in the
            specified column.  Typically this value is obtained by calling build_class_map.
        """
        col = self.resolve_column(col)
        eq = Equilateral(len(classes), normalized_low, normalized_high)

        for row in data_set:
            key = row[col]
            value = classes[key]
            row.pop(col)
            vec = eq.encode(value)
            for i in range(0, len(vec)):
                row.insert(col + i, vec[i])
Example #3
0
    def norm_col_equilateral(self, data_set, col, classes, normalized_low, normalized_high):
        """ Normalize a column using equilateral.  The classes parameter contains a map of the unique items in the
            specified column.  Typically this value is obtained by calling build_class_map.
        """
        col = self.resolve_column(col)
        eq = Equilateral(len(classes), normalized_low, normalized_high)

        for row in data_set:
            key = row[col]
            value = classes[key]
            row.pop(col)
            vec = eq.encode(value)
            for i in range(0, len(vec)):
                row.insert(col + i, vec[i])
Example #4
0
 def test_equilateral(self):
     eq = Equilateral(3, -1, 1)
     d = eq.encode(1);
     self.assertAlmostEqual(0.8660254037844386, d[0], 7)
     self.assertAlmostEqual(-0.5, d[1], 7)