Example #1
0
    def write_predictions():
        pred_list = []
        prediction = tf.argmax(y_conv,1)
        length = int(len(validation) / test_batch)
        for i in range(length):
            a = i*test_batch
            pred_list = pred_list + prediction.eval(feed_dict={x: validation[a:a + test_batch],y_: v_labels[a:a + test_batch],keep_prob: 1.0}, session=sess).tolist()
        pred_list += prediction.eval(feed_dict={x: validation[length * test_batch:],y_: v_labels[length * test_batch:],keep_prob: 1.0}, session=sess).tolist()
        # print(len(validation))
        # print(len(pred_list))

        class_acc = {}
        class_amount = {}
        for i, pred in enumerate(pred_list):
            class_amount[val_labels[i]] = 0
            class_acc[val_labels[i]] = 0
        for i, pred in enumerate(pred_list):
            class_amount[val_labels[i]] += 1
            if pred == val_labels[i]:
                class_acc[val_labels[i]] += 1

        write_file = str(save_location + run_number + '_predictions.txt')
        with open(write_file, 'w') as f:
            for i, pred in enumerate(pred_list):
                string = str(str(pred) + ' ' + str(val_labels[i]) + ' ' +
                    str(class_acc[val_labels[i]]) + '/' + str(class_amount[val_labels[i]]) + '=' +
                    str(float(class_acc[val_labels[i]] / class_amount[val_labels[i]])) + '\n')
                f.write(string)
        error_gen.make_html(str(net_name + '_0'), write_file, 'kanji_dictionary_32_distort2.json', 'validation_32_distort2.json')
Example #2
0
    def write_predictions():
        pred_list = []
        prediction = tf.argmax(y_conv,1)
        length = int(len(validation) / test_batch)
        for i in range(length):
            a = i*test_batch
            pred_list = pred_list + prediction.eval(feed_dict={x: validation[a:a + test_batch],y_: v_labels[a:a + test_batch],keep_prob: 1.0}, session=sess).tolist()

        write_file = str(save_location + run_number + '_predictions.txt')
        with open(write_file, 'w') as f:
            for i, pred in enumerate(pred_list):
                string = str(str(pred) + ' ' + str(val_labels[i]) + '\n')
                f.write(string)
        error_gen.make_html(net_name, write_file, 'kanji_dictionary.json', 'validation.json')