Example #1
0
def get_desired_features():
    print("With which features do you want to train the model? (e.g. MFCC, FBANK, MFCC and pitch, FBANK and deltas)")
    features = input()
    if "exit" in features.lower():
        raise ExitApp()
    print("\nYou entered: \n\n{}\n\nIs this correct? (Y/N)".format(features))
    correct = input()
    if "exit" in correct.lower():
        raise ExitApp()
    elif "y" not in correct.lower():
        features = get_desired_features()
        
    return features
Example #2
0
def get_label_column():
    print("What is the column name for the label? (e.g. word, gender, class)")
    label_column = input()
    if "exit" in label_column.lower():
        raise ExitApp()
    print("You entered ' {} '. Is that correct? (Y/N)".format(label_column))
    correct = input()
    if "y" in correct.lower():
        pass
    elif "exit" in correct.lower():
        raise ExitApp()
    else:
        label_column = get_label_column()
    return label_column
Example #3
0
def get_feature_type():
    print("What kind of features will you extract? (e.g. mfcc, fbank, fbank with deltas, mfcc with pitch values)")
    features = input()
    if "exit" in features.lower():
        raise ExitApp()
    print("You entered {}".format(features))
    return features
Example #4
0
def go():
    print("Press ENTER to continue.")
    cont = input()
    if "exit" in cont.lower():
        raise ExitApp("Have a good day!")
    elif cont != "":
        print("Type 'exit' to end the program.")
        cont = go()
    return True
 def login(self,username):
     print("\nEnter your password to access your lists.\n")
     password = self.get_password()
     if 'exit' == password.lower():
         raise ExitApp("Aw man. You're leaving already? Come back soon!") 
     if password:
         match = self.check_password(username, password)
         return match
     return None
Example #6
0
def get_label_data_type():
    print("What type of data will the label be saved in the table? (i.e. 'INT', or 'TEXT')")
    data_type = input()
    type_options = ["INT","INTEGER","TEXT"]
    if data_type.upper() not in type_options:
        print("Please enter one of the following: {}".format(", ").join(type_options))
        data_type = label_data_type()
    elif "exit" in data_type.lower():
        raise ExitApp()
    return data_type
Example #7
0
def add_noise():
    print("Will you add noise? (Y/N)")
    noise = input()
    if "y" in noise.lower():
        noise = True
    elif "n" in noise.lower():
        noise = False
    elif "exit" in noise.lower():
        raise ExitApp()
    return noise
Example #8
0
def set_limit():
    print("Is there a limit for the data? If YES: enter an INTEGER.")
    limit = input()
    if "exit" in limit.lower():
        raise ExitApp()
    elif limit.isdigit():
        limit = int(limit)
    else:
        limit = None
    return limit
Example #9
0
def get_num_features():
    print("How many feature columns do you need? (If you want the derivatives, DON'T INCLUDE THE COLUMNS FOR THOSE VALUSE HERE)")
    num_features = input()
    if num_features.isdigit():
        pass
    elif "exit" in num_features.lower():
        raise ExitApp()
    else:
        print("Please enter an integer")
        num_features = get_num_features()
    return int(num_features)
 def get_username(self):
     print("\nUsername: "******"Spaces and special characters will be removed: ")
     username = rem_space_specialchar(username)
     if 'exit' == username.lower():
         raise ExitApp("Aw man. I didn't even catch your name. Come back soon!") 
     if username:
         return username
     else:
         print("Not enough alphanumeric characters used. Try again.")
         self.get_username()
     return None
Example #11
0
def load_data(database,table,columns=None):
    if columns is None:
        columns = "all"
    print("Loading data from {} columns from {} in database: {}".format(columns,table,database))
    limit = set_limit()
    print("Press ENTER to continue")
    cont = input()
    if "exit" in cont.lower():
        raise ExitApp()
    elif cont.lower() == "":
        pass
    else:
        cont = load_data(database,table)
    data = select_data(database,table,limit)
    return data
from errors import ExitApp
from user_account import LoginUser
from user_data_babyname import UserData

if __name__ == "__main__":
    database = "babynames_USA.db"
    num_clusters = 30
    num_features = 5  #selected features to define clusters
    try:
        login = None
        ud = None
        login = LoginUser(database)
        login.sign_in()
        if login.is_user != True:
            print("Login failed.")
            raise ExitApp("UserId not found.")
        user_id = login.get_userid(login.username)
        if user_id is None:
            print("User ID Error")
            raise SystemExit
        ud = UserData(database,
                      user_id,
                      num_clusters,
                      num_features=num_features)
        ud.main_menu()
    except ExitApp:
        print("Have a good day!")
    except SystemExit as e:
        print("Problem occurred: {}. Had to close app.".format(e))
    except Exception as e:
        print(e)
Example #13
0
def main(script_purpose, split=False):
    current_filename = os.path.basename(__file__)
    session_name = get_date(
    )  #make sure this session has a unique identifier - link to model name and logging information
    path_to_data = "./data_3word"
    start = time.time()

    try:

        start_logging(script_purpose)
        logging.info("Running script: {}".format(current_filename))
        logging.info("Session: {}".format(session_name))

        tablename, feature_type, num_features, num_feature_columns, noise = user_input.set_variables(
        )

        paths, labels = featfun.collect_audio_and_labels(path_to_data)
        noise_path = "./_background_noise_/doing_the_dishes.wav"

        label_list = [i[1] for i in labels]
        class_labels = list(set(label_list))
        print("The labels found: {}".format(class_labels))

        #find out number of recordings from each class
        #ask user if they want to balance out the data?
        dict_class_distribution = featfun.get_class_distribution(
            class_labels, label_list)
        min_val = (1000000, None)
        for key, value in dict_class_distribution.items():
            if value < min_val[0]:
                min_val = (value, key)
        print("Number of wave files for each class:\n\n{}\n\n".format(
            dict_class_distribution))
        print("Chosen max number of files from each class = {}".format(
            min_val[0]))
        print("\n\nDo you approve this? (Y/N)")
        approve = input()
        if 'exit' in approve.lower():
            raise ExitApp()
        elif 'y' in approve.lower():
            pass
        elif 'n' in approve.lower():
            print("Okay... woring on that functionality")
            raise ExitApp()
        else:
            raise ExitApp()

        max_num_per_class = min_val[0]

        #create dictionary w indices to labels and paths for each class
        dict_class_index_list = {}
        for label in class_labels:
            dict_class_index_list[label] = []
            for i, label_item in enumerate(label_list):
                if label == label_item:
                    dict_class_index_list[label].append(i)

        #get num per training/validation/test datasets
        max_nums_train_val_test = get_max_nums_train_val_test(
            max_num_per_class)

        #randomly assign indices to train, val, test datasets:
        dict_class_dataset_index_list = {}
        for label in class_labels:
            tot_indices = dict_class_index_list[label]
            tot_indices_copy = tot_indices.copy()
            random.shuffle(tot_indices_copy)
            train_indices = tot_indices_copy[:max_nums_train_val_test[0]]
            val_indices = tot_indices_copy[
                max_nums_train_val_test[0]:max_nums_train_val_test[0] +
                max_nums_train_val_test[1]]
            test_indices = tot_indices_copy[
                max_nums_train_val_test[0] +
                max_nums_train_val_test[1]:max_nums_train_val_test[0] +
                max_nums_train_val_test[1] + max_nums_train_val_test[2]]
            dict_class_dataset_index_list[label] = [
                train_indices, val_indices, test_indices
            ]

        print()
        print("Name for directory to save feature images:")
        new_directory = input()
        if 'exit' in new_directory.lower():
            raise ExitApp()

        train_val_test_dirs = []
        for i in ["train", "val", "test"]:
            train_val_test_dirs.append(new_directory + "_{}".format(i))

        start_feature_extraction = time.time()

        for label in class_labels:

            for i, directory in enumerate(train_val_test_dirs):
                if i == 0:
                    train = True
                else:
                    train = False

                try:
                    os.makedirs(directory)
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise

                dict_new_paths = {}

                new_path = './{}/{}/'.format(directory, label)
                try:
                    os.makedirs(new_path)
                    dict_new_paths[label] = new_path
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise

                #limit = int(max_nums_train_val_test[i]*.3)
                limit = None
                num_pics = max_nums_train_val_test[i]
                msg = "\nExtracting features from {} samples. \nImages will be saved in the directory {}".format(
                    num_pics, new_path)
                print(msg)
                logging.info(msg)
                frame_width = 11
                time_step = 6
                logging.info(
                    "extracting features from wavefiles. Limit = {}".format(
                        limit))
                paths_list_dataset = []
                labels_list_dataset = []

                train_val_test_index_list = dict_class_dataset_index_list[
                    label]
                for k in train_val_test_index_list[i]:
                    paths_list_dataset.append(paths[k])
                    labels_list_dataset.append(label_list[k])

                print("Extracting features from class: {}".format(label))

                for j, wav in enumerate(paths_list_dataset):
                    if limit:
                        if j <= limit:
                            featfun.save_chroma(
                                wav,
                                split,
                                frame_width,
                                time_step,
                                feature_type,
                                num_features,
                                num_feature_columns,
                                noise,
                                dict_new_paths[labels_list_dataset[j]],
                                train,
                                noise_path,
                                vad=True,
                                add_noise=True)
                    else:
                        featfun.save_chroma(
                            wav,
                            split,
                            frame_width,
                            time_step,
                            feature_type,
                            num_features,
                            num_feature_columns,
                            noise,
                            dict_new_paths[labels_list_dataset[j]],
                            train,
                            noise_path,
                            vad=True,
                            add_noise=True)

        end_feature_extraction = time.time()
        logging.info("Duration setup: {} minutes".format(
            round((start_feature_extraction - start) / 60, 2)))
        print("Duration of feature extraction: {} minutes".format(
            round((end_feature_extraction - start_feature_extraction) / 60,
                  2)))
    except ExitApp:
        print("Have a good day!")
        logging.info("User exited app.")
    except FeatureExtractionError as e:
        logging.exception("Error occurred in feature extraction: {}".format(e))
    except Exception as e:
        logging.exception("Error occurred: {}".format(e))
    finally:
        end = time.time()
        duration = round((end - start) / 60, 2)
        logging.info("Duration: {} minutes".format(duration))
Example #14
0
        color_scale = 1
        sampling_rate = 16000
        noise_filename = "background_noise.wav"
        if sex == "female":
            speech_filename = "speaker_aislyn_satz.wav"
            speech_nr_filename = "speech_modelready_aislyn11.wav"
        else:
            speech_filename = "speaker_thomas_satz.wav"
            speech_nr_filename = "speech_modelready_thomas9.wav"

        print("Testing classifier with {} speech:".format(sex))
        print("Press ENTER to start")
        ready = input()

        if ready != "":
            raise ExitApp()

        #background_noise = speech_collection.record(5,sampling_rate)
        #speech_collection.save_recording("noise_trash.wav",background_noise,sampling_rate)
        #print("Please press Enter and then say loudly and clearly: \n\n'Hallo, wie geht es Ihnen?'\n")
        #start = input()
        #if start != "":
        #    raise ExitApp()

        #speech = speech_collection.record(5,sampling_rate)
        #print("\nNow saving..")
        #speech_collection.save_recording("speech_trash.wav",speech,sampling_rate)

        print("\nNow extracting features..\n")
        y_speech, sr = librosa.load(speech_filename, sr=sampling_rate)
        #y_noise, sr = librosa.load("background_noise.wav",sr=sampling_rate)