Example #1
0
def test_moran_loc_scatterplot():
    df = _test_data_columbus()

    x = df['INC'].values
    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = Moran_Local(y, w)
    moran_bv = Moran_BV(x, y, w)

    # try without p value
    fig, _ = _moran_loc_scatterplot(moran_loc)
    plt.close(fig)

    # try with p value and different figure size
    fig, _ = _moran_loc_scatterplot(moran_loc, p=0.05,
                                    aspect_equal=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    # try with p value and zstandard=False
    fig, _ = _moran_loc_scatterplot(moran_loc, p=0.05, zstandard=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    # try without p value and zstandard=False
    fig, _ = _moran_loc_scatterplot(moran_loc, zstandard=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    raises(ValueError, _moran_loc_scatterplot, moran_bv, p=0.5)
    warns(UserWarning, _moran_loc_scatterplot, moran_loc, p=0.5,
                 scatter_kwds=dict(c='#4393c3'))
Example #2
0
def test_moran_bv_scatterplot():
    gdf = _test_data()
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate Bivariate Moran
    moran_bv = Moran_BV(x, y, w)
    # plot
    fig, _ = _moran_bv_scatterplot(moran_bv)
    plt.close(fig)
    # customize plot
    fig, _ = _moran_bv_scatterplot(moran_bv, aspect_equal=False,
                                   fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)
Example #3
0
def test_moran_bv_scatterplot():
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate Bivariate Moran
    moran_bv = Moran_BV(x, y, w)
    # plot
    fig, _ = _moran_bv_scatterplot(moran_bv)
    plt.close(fig)
    # customize plot
    fig, _ = _moran_bv_scatterplot(moran_bv,
                                   fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)
Example #4
0
def test_plot_moran_bv():
    # Load data and calculate weights
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate Bivariate Moran
    moran_bv = Moran_BV(x, y, w)
    # plot
    fig, _ = plot_moran_bv(moran_bv)
    plt.close(fig)
    # customize plot
    fig, _ = plot_moran_bv(moran_bv,
                           aspect_equal=False,
                           fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)
Example #5
0
def test_moran_loc_scatterplot():
    columbus = examples.load_example('Columbus')
    link_to_data = columbus.get_path('columbus.shp')
    df = gpd.read_file(link_to_data)

    x = df['INC'].values
    y = df['HOVAL'].values
    w = Queen.from_dataframe(df)
    w.transform = 'r'

    moran_loc = Moran_Local(y, w)
    moran_bv = Moran_BV(x, y, w)

    # try without p value
    fig, _ = _moran_loc_scatterplot(moran_loc)
    plt.close(fig)

    # try with p value and different figure size
    fig, _ = _moran_loc_scatterplot(moran_loc,
                                    p=0.05,
                                    aspect_equal=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    # try with p value and zstandard=False
    fig, _ = _moran_loc_scatterplot(moran_loc,
                                    p=0.05,
                                    zstandard=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    # try without p value and zstandard=False
    fig, _ = _moran_loc_scatterplot(moran_loc,
                                    zstandard=False,
                                    fitline_kwds=dict(color='#4393c3'))
    plt.close(fig)

    assert_raises(ValueError, _moran_loc_scatterplot, moran_bv, p=0.5)
    assert_warns(UserWarning,
                 _moran_loc_scatterplot,
                 moran_loc,
                 p=0.5,
                 scatter_kwds=dict(c='#4393c3'))
Example #6
0
def test_moran_scatterplot():
    gdf = _test_data()
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate `esda.moran` Objects
    moran = Moran(y, w)
    moran_bv = Moran_BV(y, x, w)
    moran_loc = Moran_Local(y, w)
    moran_loc_bv = Moran_Local_BV(y, x, w)
    # try with p value so points are colored or warnings apply
    fig, _ = moran_scatterplot(moran, p=0.05, aspect_equal=False)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_loc, p=0.05)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_bv, p=0.05)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_loc_bv, p=0.05)
    plt.close(fig)
Example #7
0
def test_moran_scatterplot():
    link_to_data = examples.get_path('Guerry.shp')
    gdf = gpd.read_file(link_to_data)
    x = gdf['Suicids'].values
    y = gdf['Donatns'].values
    w = Queen.from_dataframe(gdf)
    w.transform = 'r'
    # Calculate `esda.moran` Objects
    moran = Moran(y, w)
    moran_bv = Moran_BV(y, x, w)
    moran_loc = Moran_Local(y, w)
    moran_loc_bv = Moran_Local_BV(y, x, w)
    # try with p value so points are colored or warnings apply
    fig, _ = moran_scatterplot(moran, p=0.05)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_loc, p=0.05)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_bv, p=0.05)
    plt.close(fig)
    fig, _ = moran_scatterplot(moran_loc_bv, p=0.05)
    plt.close(fig)