Example #1
0
def test_user_provided_invalid_kernel():
    params, test = pop_elements(get_uniform_params(2, 6), 10, 12)

    ensemble = get_1d_two_param_cube(params)

    with pytest.raises(ValueError):
        m = gp_model(params, ensemble, kernel=5)
Example #2
0
def test_sample():
    training_params = get_uniform_params(2)
    training_ensemble = get_1d_two_param_cube(training_params)

    m = gp_model(training_params, training_ensemble)
    m.train()

    # Test that sample returns the correct shape array for
    #  the given model, obs and params.
    obs_uncertainty = training_ensemble.data.std(axis=0)

    # Perturbing the obs by one sd should lead to an implausibility of 1.
    obs = training_ensemble[10].copy() + obs_uncertainty

    sampler = MCMCSampler(m,
                          obs,
                          obs_uncertainty=obs_uncertainty / obs.data,
                          interann_uncertainty=0.,
                          repres_uncertainty=0.,
                          struct_uncertainty=0.)

    # Generate only valid samples, don't bother with burn-in
    valid_samples = sampler.sample(n_samples=10,
                                   mcmc_kwargs=dict(num_burnin_steps=0))

    # Just check the shape. We test the actual probabilities above
    #  and we don't need to test the tf mcmc code
    assert valid_samples.shape == (10, 2)
Example #3
0
def test_user_specified_single_kernel():
    """
    Setup for the simple 1D 2 parameter test case with user specified kernel
    """
    params, test = pop_elements(get_uniform_params(2, 6), 10, 12)

    ensemble = get_1d_two_param_cube(params)

    m = gp_model(params, ensemble, kernel=['RBF'])
    m.train()
Example #4
0
def test_user_specified_kernel():
    """
    Setup for the simple 1D 2 parameter test case with user specified kernel
    """
    params, test = pop_elements(get_uniform_params(2, 6), 10, 12)

    ensemble = get_1d_two_param_cube(params)

    m = gp_model(params, ensemble, kernel=['Bias', "Polynomial", 'Linear', "RBF"])
    m.train()
Example #5
0
def test_user_specified_invalid_op():
    """
    Setup for the simple 1D 2 parameter test case with user specified kernel
    """
    params, test = pop_elements(get_uniform_params(2, 6), 10, 12)

    ensemble = get_1d_two_param_cube(params)

    with pytest.raises(ValueError):
        m = gp_model(params, ensemble, kernel=['RBF', 'White'], kernel_op='Blah')
Example #6
0
    def setup_class(cls) -> None:
        params, test = pop_elements(get_uniform_params(3), 50)

        ensemble = get_three_param_cube(params)
        m = gp_model(params, ensemble)
        m.train()

        cls.model = m
        cls.params = params
        cls.test_params = test
        cls.eval_fn = eval_cube
Example #7
0
    def setup_class(cls) -> None:
        params, test = pop_elements(get_uniform_params(3), 50)

        ensemble = get_three_param_cube(params)
        # Create a new, ensemble at lower precision
        ensemble = ensemble.copy(data=ensemble.data.astype('float32'))
        m = gp_model(params, ensemble)
        m.train()

        cls.model = m
        cls.params = params
        cls.test_params = test
        cls.eval_fn = eval_cube
Example #8
0
    def setup_class(cls) -> None:

        params, test = pop_elements(get_uniform_params(2, 6), 10, 12)

        ensemble = get_1d_two_param_cube(params)

        m = gp_model(params, ensemble, kernel=['Bias', "Polynomial", 'Linear', "RBF"])
        m.train()

        cls.model = m
        cls.params = params
        cls.test_params = test
        cls.eval_fn = eval_1d_cube
Example #9
0
    def setup_class(cls) -> None:

        params, test = pop_elements(get_uniform_params(2, 6), 10, 12)

        ensemble = get_1d_two_param_cube(params)

        m = gp_model(params, ensemble)
        m.train()

        cls.model = m
        cls.params = params
        cls.test_params = test
        cls.eval_fn = eval_1d_cube
Example #10
0
def test_user_provided_kernel():
    """
    Setup for the simple 1D 2 parameter test case with user provided kernel
    """
    import gpflow

    kernel = gpflow.kernels.RBF(lengthscales=[0.5] * 2, variance=0.01) + \
             gpflow.kernels.Linear(variance=[1.] * 2) + \
             gpflow.kernels.Polynomial(variance=[1.] * 2) + \
             gpflow.kernels.Bias()

    params, test = pop_elements(get_uniform_params(2, 6), 10, 12)

    ensemble = get_1d_two_param_cube(params)

    m = gp_model(params, ensemble, kernel=kernel)
    m.train()
Example #11
0
    def setup_class(cls) -> None:
        import gpflow

        kernel = gpflow.kernels.RBF(lengthscales=[0.5] * 2, variance=0.01) + \
                 gpflow.kernels.Linear(variance=[1.] * 2) + \
                 gpflow.kernels.Polynomial(variance=[1.] * 2) + \
                 gpflow.kernels.Bias()

        params, test = pop_elements(get_uniform_params(2, 6), 10, 12)

        ensemble = get_1d_two_param_cube(params)

        m = gp_model(params, ensemble, kernel=kernel)
        m.train()

        cls.model = m
        cls.params = params
        cls.test_params = test
        cls.eval_fn = eval_1d_cube
Example #12
0
def test_simple_sample():
    from iris.cube import Cube
    X = get_uniform_params(2)
    z = simple_polynomial_fn_two_param(*X.T)

    m = gp_model(X, z)
    m.train()

    sampler = MCMCSampler(m,
                          Cube(np.asarray([2.])),
                          obs_uncertainty=0.1,
                          interann_uncertainty=0.,
                          repres_uncertainty=0.,
                          struct_uncertainty=0.)

    # Use as few burn-in steps as we can get away with to speed up the test
    samples = sampler.sample(n_samples=500,
                             mcmc_kwargs=dict(num_burnin_steps=50))
    Zs = simple_polynomial_fn_two_param(*samples.T)
    assert_allclose(Zs.mean(), 2., rtol=0.1)
Example #13
0
    def setup_method(self):
        self.training_params = get_uniform_params(3)
        self.training_ensemble = get_three_param_cube(self.training_params)

        self.m = gp_model(self.training_params, self.training_ensemble)
        self.m.train()