Example #1
0
    def __init__(self, idim, odim, args, flag_return=True):
        """Construct an E2E object.

        :param int idim: dimension of inputs
        :param int odim: dimension of outputs
        :param Namespace args: argument Namespace containing options
        """
        chainer.Chain.__init__(self)
        self.mtlalpha = args.mtlalpha
        assert 0 <= self.mtlalpha <= 1, "mtlalpha must be [0,1]"
        self.etype = args.etype
        self.verbose = args.verbose
        self.char_list = args.char_list
        self.outdir = args.outdir

        # below means the last number becomes eos/sos ID
        # note that sos/eos IDs are identical
        self.sos = odim - 1
        self.eos = odim - 1

        # subsample info
        # +1 means input (+1) and layers outputs (args.elayer)
        subsample = np.ones(args.elayers + 1, dtype=np.int)
        if args.etype.endswith("p") and not args.etype.startswith("vgg"):
            ss = args.subsample.split("_")
            for j in range(min(args.elayers + 1, len(ss))):
                subsample[j] = int(ss[j])
        else:
            logging.warning(
                'Subsampling is not performed for vgg*. It is performed in max pooling layers at CNN.')
        logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
        self.subsample = subsample

        # label smoothing info
        if args.lsm_type:
            logging.info("Use label smoothing with " + args.lsm_type)
            labeldist = label_smoothing_dist(odim, args.lsm_type, transcript=args.train_json)
        else:
            labeldist = None

        with self.init_scope():
            # encoder
            self.enc = encoder_for(args, idim, self.subsample)
            # ctc
            self.ctc = ctc_for(args, odim)
            # attention
            self.att = att_for(args)
            # decoder
            self.dec = decoder_for(args, odim, self.sos, self.eos, self.att, labeldist)

        self.acc = None
        self.loss = None
        self.flag_return = flag_return
Example #2
0
    def __init__(self, idim, odim, args, flag_return=True):
        """Construct an E2E object.

        :param int idim: dimension of inputs
        :param int odim: dimension of outputs
        :param Namespace args: argument Namespace containing options
        """
        chainer.Chain.__init__(self)
        self.mtlalpha = args.mtlalpha
        assert 0 <= self.mtlalpha <= 1, "mtlalpha must be [0,1]"
        self.etype = args.etype
        self.verbose = args.verbose
        self.char_list = args.char_list
        self.outdir = args.outdir

        # below means the last number becomes eos/sos ID
        # note that sos/eos IDs are identical
        self.sos = odim - 1
        self.eos = odim - 1

        # subsample info
        self.subsample = get_subsample(args, mode="asr", arch="rnn")

        # label smoothing info
        if args.lsm_type:
            logging.info("Use label smoothing with " + args.lsm_type)
            labeldist = label_smoothing_dist(odim,
                                             args.lsm_type,
                                             transcript=args.train_json)
        else:
            labeldist = None

        with self.init_scope():
            # encoder
            self.enc = encoder_for(args, idim, self.subsample)
            # ctc
            self.ctc = ctc_for(args, odim)
            # attention
            self.att = att_for(args)
            # decoder
            self.dec = decoder_for(args, odim, self.sos, self.eos, self.att,
                                   labeldist)

        self.acc = None
        self.loss = None
        self.flag_return = flag_return