def estimate_beats(infile): """ Return the estimated beat onsets in seconds for an audio file. """ audio = standard.MonoLoader(filename=infile)() bt = standard.BeatTrackerMultiFeature() beats, confidence = bt(audio) return beats
def compute_beats(audio): """Computes the beats using Essentia.""" logging.info("Computing Beats...") conf = 1.0 beats, conf = ES.BeatTrackerMultiFeature()(audio) # beats = ES.BeatTrackerDegara()(audio) beats *= 44100 / msaf.Anal.sample_rate # Essentia requires 44100 input # Double the beats if found beats are too little th = 0.9 # 1 would equal to at least 1 beat per second while beats.shape[0] / (audio.shape[0] / float(msaf.Anal.sample_rate)) < th \ and beats.shape[0] > 2: beats = double_beats(beats) return beats, conf
def getMultiFeatureOnsets(XAudio, Fs, hopSize): """ Call Essentia's implemtation of multi feature beat tracking :param XAudio: Numpy array of raw audio samples :param Fs: Sample rate :param hopSize: Hop size of each onset function value :returns (tempo, beats): Average tempo, numpy array of beat intervals in seconds """ from essentia import Pool, array import essentia.standard as ess X = array(XAudio) b = ess.BeatTrackerMultiFeature() beats = b(X) print("Beat confidence: ", beats[1]) beats = beats[0] tempo = 60 / np.mean(beats[1::] - beats[0:-1]) beats = np.array(np.round(beats * Fs / hopSize), dtype=np.int64) return (tempo, beats)
def zapata14bpm(y): essentia_beat = estd.BeatTrackerMultiFeature() mean_tick_distance = np.mean(np.diff(essentia_beat(y)[0])) return 60 / mean_tick_distance
def essentia_beats(audio): beats, confidence = es.BeatTrackerMultiFeature()(audio) return beats
def getBeats(self): BeatTracker = es.BeatTrackerMultiFeature() beats, _ = BeatTracker(self.audio) return beats
def compute_beats(audio): """Computes the beats using Essentia.""" logging.info("Computing Beats...") ticks, conf = ES.BeatTrackerMultiFeature()(audio) return ticks, conf