Example #1
0
def get_hpeaks_per_frame(audio, sr=44100, onlyfrecuencies=False, nsines=20):
    """
    Get Harmonic peaks in an audio
    :param audio: Audio either mono or stereo. Will be downsampled to mono
    :param sr: Samplerate used for the audio
    :return: Nx2x100. N is the number of resulting frames. 2x100 are the frequencies and magnitudes respectively.
    """
    if audio.ndim > 1:
        audio = std.MonoMixer()(audio, audio.shape[1])

    fft_algo = std.FFT()
    pyin = std.PitchYin()
    hpeaks = std.HarmonicPeaks()
    sine_anal = std.SineModelAnal(maxnSines=nsines,
                                  orderBy='frequency',
                                  minFrequency=1)
    sines = []
    for i, frame in enumerate(
            std.FrameGenerator(audio, frameSize=4096, hopSize=2048)):
        pitch, _ = pyin(frame)
        fft = fft_algo(frame)
        freqs, mags, _ = sine_anal(fft)
        sorting_indexes = np.argsort(freqs)
        freqs = freqs[sorting_indexes]
        mags = mags[sorting_indexes]
        non_zero_freqs = np.where(freqs != 0)
        freqs = freqs[non_zero_freqs]
        mags = mags[non_zero_freqs]
        freqs, mags = hpeaks(freqs, mags, pitch)
        sines.append([freqs, mags])
    sines = np.array(sines)
    if onlyfrecuencies:
        return sines[:, 0, :]
    else:
        return sines[:, 0, :], sines[:, 1, :]
Example #2
0
def compute(audio, pool, options):
    # analysis parameters
    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    windowType = options['windowType']

    # temporal descriptors
    lpc = ess.LPC(order=10, type='warped', sampleRate=sampleRate)
    zerocrossingrate = ess.ZeroCrossingRate()

    # frame algorithms
    frames = ess.FrameGenerator(audio=audio, frameSize=frameSize, hopSize=hopSize)
    window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType)
    spectrum = ess.Spectrum(size=frameSize)

    # spectral algorithms
    barkbands = ess.BarkBands(sampleRate=sampleRate)
    centralmoments = ess.CentralMoments()
    crest = ess.Crest()
    centroid = ess.Centroid()
    decrease = ess.Decrease()
    spectral_contrast = ess.SpectralContrast(frameSize=frameSize,
                                             sampleRate=sampleRate,
                                             numberBands=6,
                                             lowFrequencyBound=20,
                                             highFrequencyBound=11000,
                                             neighbourRatio=0.4,
                                             staticDistribution=0.15)
    distributionshape = ess.DistributionShape()
    energy = ess.Energy()
    # energyband_bass, energyband_middle and energyband_high parameters come from "standard" hi-fi equalizers
    energyband_bass = ess.EnergyBand(startCutoffFrequency=20.0, stopCutoffFrequency=150.0, sampleRate=sampleRate)
    energyband_middle_low = ess.EnergyBand(startCutoffFrequency=150.0, stopCutoffFrequency=800.0, sampleRate=sampleRate)
    energyband_middle_high = ess.EnergyBand(startCutoffFrequency=800.0, stopCutoffFrequency=4000.0,
                                            sampleRate=sampleRate)
    energyband_high = ess.EnergyBand(startCutoffFrequency=4000.0, stopCutoffFrequency=20000.0, sampleRate=sampleRate)
    flatnessdb = ess.FlatnessDB()
    flux = ess.Flux()
    harmonic_peaks = ess.HarmonicPeaks()
    hfc = ess.HFC()
    mfcc = ess.MFCC()
    rolloff = ess.RollOff()
    rms = ess.RMS()
    strongpeak = ess.StrongPeak()

    # pitch algorithms
    pitch_detection = ess.PitchYinFFT(frameSize=frameSize, sampleRate=sampleRate)
    pitch_salience = ess.PitchSalience()

    # dissonance
    spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate, orderBy='frequency')
    dissonance = ess.Dissonance()

    # spectral complexity
    # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame
    spectral_complexity = ess.SpectralComplexity(magnitudeThreshold=0.005)

    INFO('Computing Low-Level descriptors...')

    # used for a nice progress display
    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5

    pitches, pitch_confidences = [], []

    progress = Progress(total=total_frames)

    #scPool = es.Pool()  # pool for spectral contrast

    for frame in frames:

        frameScope = [start_of_frame / sampleRate, (start_of_frame + frameSize) / sampleRate]
        # pool.setCurrentScope(frameScope)

        # silence rate
        # pool.add(namespace + '.' + 'silence_rate_60dB', es.isSilent(frame))
        pool.add(namespace + '.' + 'silence_rate_60dB', is_silent_threshold(frame, -60))
        pool.add(namespace + '.' + 'silence_rate_30dB', is_silent_threshold(frame, -30))
        pool.add(namespace + '.' + 'silence_rate_20dB', is_silent_threshold(frame, -20))

        if options['skipSilence'] and es.isSilent(frame):
            total_frames -= 1
            start_of_frame += hopSize
            continue

        # temporal descriptors
        pool.add(namespace + '.' + 'zerocrossingrate', zerocrossingrate(frame))
        (frame_lpc, frame_lpc_reflection) = lpc(frame)
        pool.add(namespace + '.' + 'temporal_lpc', frame_lpc)

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        # spectrum-based descriptors
        power_spectrum = frame_spectrum ** 2
        pool.add(namespace + '.' + 'spectral_centroid', centroid(power_spectrum))
        pool.add(namespace + '.' + 'spectral_decrease', decrease(power_spectrum))
        pool.add(namespace + '.' + 'spectral_energy', energy(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_low', energyband_bass(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_middle_low', energyband_middle_low(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_middle_high', energyband_middle_high(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_energyband_high', energyband_high(frame_spectrum))
        pool.add(namespace + '.' + 'hfc', hfc(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_rms', rms(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_flux', flux(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_rolloff', rolloff(frame_spectrum))
        pool.add(namespace + '.' + 'spectral_strongpeak', strongpeak(frame_spectrum))

        # central moments descriptors
        frame_centralmoments = centralmoments(power_spectrum)
        (frame_spread, frame_skewness, frame_kurtosis) = distributionshape(frame_centralmoments)
        pool.add(namespace + '.' + 'spectral_kurtosis', frame_kurtosis)
        pool.add(namespace + '.' + 'spectral_spread', frame_spread)
        pool.add(namespace + '.' + 'spectral_skewness', frame_skewness)

        # dissonance
        (frame_frequencies, frame_magnitudes) = spectral_peaks(frame_spectrum)
        frame_dissonance = dissonance(frame_frequencies, frame_magnitudes)
        pool.add(namespace + '.' + 'dissonance', frame_dissonance)

        # mfcc
        (frame_melbands, frame_mfcc) = mfcc(frame_spectrum)
        pool.add(namespace + '.' + 'mfcc', frame_mfcc)

        # spectral contrast
        (sc_coeffs, sc_valleys) = spectral_contrast(frame_spectrum)
        #scPool.add(namespace + '.' + 'sccoeffs', sc_coeffs)
        #scPool.add(namespace + '.' + 'scvalleys', sc_valleys)
        pool.add(namespace + '.' + 'spectral_contrast', sc_coeffs)


        # barkbands-based descriptors
        frame_barkbands = barkbands(frame_spectrum)
        pool.add(namespace + '.' + 'barkbands', frame_barkbands)
        pool.add(namespace + '.' + 'spectral_crest', crest(frame_barkbands))
        pool.add(namespace + '.' + 'spectral_flatness_db', flatnessdb(frame_barkbands))
        barkbands_centralmoments = ess.CentralMoments(range=len(frame_barkbands) - 1)
        (barkbands_spread, barkbands_skewness, barkbands_kurtosis) = distributionshape(
            barkbands_centralmoments(frame_barkbands))
        pool.add(namespace + '.' + 'barkbands_spread', barkbands_spread)
        pool.add(namespace + '.' + 'barkbands_skewness', barkbands_skewness)
        pool.add(namespace + '.' + 'barkbands_kurtosis', barkbands_kurtosis)

        # pitch descriptors
        frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum)
        if frame_pitch > 0 and frame_pitch <= 20000.:
            pool.add(namespace + '.' + 'pitch', frame_pitch)
        pitches.append(frame_pitch)
        pitch_confidences.append(frame_pitch_confidence)
        pool.add(namespace + '.' + 'pitch_instantaneous_confidence', frame_pitch_confidence)

        frame_pitch_salience = pitch_salience(frame_spectrum[:-1])
        pool.add(namespace + '.' + 'pitch_salience', frame_pitch_salience)

        # spectral complexity
        pool.add(namespace + '.' + 'spectral_complexity', spectral_complexity(frame_spectrum))

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    # if no 'temporal_zerocrossingrate' it means that this is a silent file
    if 'zerocrossingrate' not in descriptorNames(pool.descriptorNames(), namespace):
        raise ess.EssentiaError('This is a silent file!')

    #spectralContrastPCA(scPool, pool)

    # build pitch value histogram
    from math import log
    from numpy import bincount
    # convert from Hz to midi notes
    midipitches = []
    unknown = 0
    for freq in pitches:
        if freq > 0. and freq <= 12600:
            midipitches.append(12 * (log(freq / 6.875) / 0.69314718055995) - 3.)
        else:
            unknown += 1

    if len(midipitches) > 0:
        # compute histogram
        midipitchhist = bincount(midipitches)
        # set 0 midi pitch to be the number of pruned value
        midipitchhist[0] = unknown
        # normalise
        midipitchhist = [val / float(sum(midipitchhist)) for val in midipitchhist]
        # zero pad
        for i in range(128 - len(midipitchhist)): midipitchhist.append(0.0)
    else:
        midipitchhist = [0.] * 128
        midipitchhist[0] = 1.

    # pitchhist = ess.array(zip(range(len(midipitchhist)), midipitchhist))
    pool.add(namespace + '.' + 'spectral_pitch_histogram', midipitchhist)  # , pool.GlobalScope)

    # the code below is the same as the one above:
    # for note in midipitchhist:
    #    pool.add(namespace + '.' + 'spectral_pitch_histogram_values', note)
    #    print "midi note:", note

    pitch_centralmoments = ess.CentralMoments(range=len(midipitchhist) - 1)
    (pitch_histogram_spread, pitch_histogram_skewness, pitch_histogram_kurtosis) = distributionshape(
        pitch_centralmoments(midipitchhist))
    pool.add(namespace + '.' + 'spectral_pitch_histogram_spread', pitch_histogram_spread)  # , pool.GlobalScope)

    progress.finish()
Example #3
0
power = es.InstantPower()
log_attack_time = es.LogAttackTime()
effective_duration = es.EffectiveDuration()
auto_correlation = es.AutoCorrelation()
zero_crossing_rate = es.ZeroCrossingRate()

# Spectral descriptors
peak_freq = es.MaxMagFreq()
roll_off = es.RollOff()
flux = es.Flux()
flatness = es.Flatness()

# Harmonic descriptors
pitch = es.PitchYin(frameSize=1024)
spectral_peaks = es.SpectralPeaks(minFrequency=1e-5)
harmonic_peaks = es.HarmonicPeaks()
inharmonicity = es.Inharmonicity()
oer = es.OddToEvenHarmonicEnergyRatio()
tristimulus = es.Tristimulus()

# MFCC
mfcc = es.MFCC(inputSize=513)


class Audio:
    def __init__(self, path):
        self.audio = es.MonoLoader(filename=str(path))()
        self.name = path.name
        self.pool = essentia.Pool()

        self._build_temporal_features()
def computeLoudness(audioFile,
                    outputExt='.loudness',
                    f0=-1,
                    HopSize=0.01,
                    FrameSize=0.04643990929,
                    BinResolution=10,
                    GuessUnvoiced=True,
                    VoicingTolerance=0.2,
                    MaxFrequency=20000,
                    interpolateLoudness=0,
                    maxSilDurIntp=0.25,
                    smoothLoudness=0):
    """
  This function computes loudness (represented by energy) of the predominant source assuming either you have provided pitch of the predominant melodic source or if f0=-1, it uses Essentia-Melodia to estimate pitch of the predominant melodic source and uses harmonic detection to compute energy (treated as loudness).
  Any sudden gap in the harmonic magnitudes (undetected harmonics) which span a continous time duration < maxSilDurIntp will be interpolated. You should set this value exactly the same you used for interpolating pitch sequence to accound for short intra pattern pauses.
  """
    #reading audio file
    fs = 44100.0  #ES.AudioLoader(filename = audioFile)()[1]
    audio = ES.MonoLoader(filename=audioFile, sampleRate=fs)()

    #obtaining just the file name and splitting extionsion
    fname, ext = os.path.splitext(audioFile)

    frameNSamples = np.round(FrameSize * fs).astype(np.int)
    frameNSamples = frameNSamples + np.mod(frameNSamples, 2)

    #checking the cases, possible types of input parameter f0
    if type(f0) == int:
        #if its an integer (which essentially means the user has not provided any input and its -1), run the predominant melody estimation and obtain pitch estimate
        pitch = ES.PredominantPitchMelodia(hopSize=np.round(HopSize *
                                                            fs).astype(np.int),
                                           frameSize=frameNSamples,
                                           binResolution=BinResolution,
                                           guessUnvoiced=GuessUnvoiced,
                                           voicingTolerance=VoicingTolerance,
                                           maxFrequency=MaxFrequency,
                                           minFrequency=60)(audio)[0]
    if type(f0) == str:
        #if its a string that means a user has provided input file name of the pitch file stored in the format <time stamps><pitch value>
        pitch = np.loadtxt(f0)[:, 1]
    if type(f0) == np.ndarray:
        # if its an ndarray, this means that the given sequence is the pitch sequence to be used for loudness computation
        pitch = f0

    #creating algorithm objects to be used for harmonic detection for each audio frame
    NFFT = (2**np.ceil(np.log2(frameNSamples) + 1)).astype(np.int)
    WIN = ES.Windowing()
    SPECTRUM = ES.Spectrum()
    EQUALLOUD = ES.EqualLoudness()
    SPECPEAKS = ES.SpectralPeaks(sampleRate=fs, maxFrequency=8000)
    HARMDET = ES.HarmonicPeaks(maxHarmonics=30)

    audio_in = EQUALLOUD(audio)

    cnt = 0
    harmWghts = []
    for frame in ES.FrameGenerator(audio_in,
                                   frameSize=frameNSamples,
                                   hopSize=np.round(HopSize * fs).astype(
                                       np.int)):
        if cnt >= len(pitch):
            break
        spec = SPECTRUM(WIN(frame))
        peaks = SPECPEAKS(spec)
        #sometimes the first frequency peak corresponds to 0Hz (DC offset), adding correction for that.
        p_freq = peaks[0]
        p_mags = peaks[1]
        if len(p_freq) > 0 and p_freq[0] == 0:
            p_freq = p_freq[1:]
            p_mags = p_mags[1:]
        wghtsLocal = HARMDET(p_freq, p_mags, pitch[cnt])[1]
        harmWghts.append(wghtsLocal)
        cnt += 1

    if interpolateLoudness == 1:
        #interpolating harmonic weights
        harmWghts = np.array(harmWghts)
        harmWghtsIntrp = np.zeros(harmWghts.shape)
        for ii in range(harmWghts.shape[1]):
            harmWghts_temp = InterpolateSilence(harmWghts[:, ii], 0, HopSize,
                                                maxSilDurIntp)
            harmWghtsIntrp[:, ii] = harmWghts_temp
    else:
        harmWghtsIntrp = harmWghts

    loudness = []
    for wghtsLocal in harmWghtsIntrp:
        indValid = np.where(wghtsLocal > 0)[0]
        loudness.append(np.sqrt(np.sum(np.power(wghtsLocal[indValid], 2))))

    if interpolateLoudness == 1:
        loudness = InterpolateSilence(loudness, 0, HopSize, maxSilDurIntp)

    if smoothLoudness == 1:
        loudness = medfilt(loudness,
                           np.round(50.0 / (HopSize * 1000)).astype(np.int))

    #generating time stamps (because its equally hopped)
    TStamps = np.array(range(0, len(loudness))) * np.float(HopSize)
    dump = np.array([TStamps, loudness]).transpose()
    np.savetxt(fname + outputExt, dump, delimiter="\t")
Example #5
0
def reComputeDescriptors(inputAudioFile, outputJsonFile):

    """
    :param inputAudioFile:
    :param outputJsonFile:
    :return:
    """

    M = 2048
    N = 2048
    H = 1024
    fs = 44100

    W = 'blackmanharris62'


    #spectrum = ess.Spectrum(size=N)
    spectrum = ess.Spectrum()
    #window = ess.Windowing(size=M, type=W)
    window = ess.Windowing(type=W)
    #mfcc = ess.MFCC(numberCoefficients=12, inputSize=N/2+1)
    mfcc = ess.MFCC()

    spectral_peaks = ess.SpectralPeaks(minFrequency=1,
                                       maxFrequency=20000,
                                       maxPeaks=100,
                                       sampleRate=fs,
                                       magnitudeThreshold=0,
                                       orderBy="magnitude")

    dissonance = ess.Dissonance()

    #pitch_detection = ess.PitchYinFFT(frameSize=M, sampleRate=fs)
    pitch_detection = ess.PitchYinFFT()

    harmonic_peaks = ess.HarmonicPeaks()

    inharmonicity = ess.Inharmonicity()

    #spectral_contrast = ess.SpectralContrast(sampleRate=fs)
    spectral_contrast = ess.SpectralContrast()

    centroid = ess.Centroid()

    log_attack_time = ess.LogAttackTime()

    hfc = ess.HFC()

    # magnitudeThreshold = 0.005 is hardcoded for a "blackmanharris62" frame, see lowlevel.py
    spectral_complexity = ess.SpectralComplexity(magnitudeThreshold=0.005)


    energy = ess.Energy()

    x = ess.MonoLoader(filename=inputAudioFile, sampleRate=fs)()
    frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True)

    E = []
    numFrames = 0
    for frame in frames:
        numFrames += 1
        E_frame = energy(frame)
        E.append(E_frame)

    E_max = np.max(E)

    frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True)

    pools = [(t, es.Pool()) for t in dscr.threshold]
    for frame in frames:

        eNorm = energy(frame) / E_max

        threshPools = []
        for t, pool in pools:
            if eNorm >= t:
                threshPools.append(pool)

        mX = spectrum(window(frame))
        mfcc_bands, mfcc_coeffs = mfcc(mX)

        [pool.add('lowlevel.mfcc', mfcc_coeffs) for pool in threshPools]
        #[pool.add('lowlevel.mfcc_bands', mfcc_bands) for pool in threshPools]

        pfreq, pmag = spectral_peaks(mX)

        inds = pfreq.argsort()
        pfreq_sorted = pfreq[inds]
        pmag_sorted = pmag[inds]

        diss = dissonance(pfreq_sorted, pmag_sorted)
        [pool.add('lowlevel.dissonance', diss) for pool in threshPools]

        pitch, pitch_confidence = pitch_detection(mX)

        phfreq, phmag = harmonic_peaks(pfreq_sorted, pmag_sorted, pitch)
        if len(phfreq) > 1:
            inharm = inharmonicity(phfreq, phmag)
            [pool.add('sfx.inharmonicity', inharm) for pool in threshPools]

        sc_coeffs, sc_valleys = spectral_contrast(mX)
        [pool.add('lowlevel.spectral_contrast', sc_coeffs) for pool in threshPools]

        c = centroid(mX)
        [pool.add('lowlevel.spectral_centroid', c) for pool in threshPools]

        lat = log_attack_time(frame)
        [pool.add('sfx.logattacktime', lat) for pool in threshPools]

        h = hfc(mX)
        [pool.add('lowlevel.hfc', h) for pool in threshPools]

        spec_complx = spectral_complexity(mX)
        [pool.add('lowlevel.spectral_complexity', spec_complx) for pool in threshPools]


    #calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean', 'var'])
    calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean'])
    aggrPools = [calc_Mean_Var(pool) for t, pool in pools]

    features = {}
    [appendFeatures(features, aggrPools[i], ("ethc"+str(dscr.thresholdSelect[i]))) for i in range(len(aggrPools))]
    json.dump(features, open(outputJsonFile, 'w'))
Example #6
0
def reComputeDescriptors(inputAudioFile, outputJsonFile):
    """
    :param inputAudioFile:
    :param outputJsonFile:
    :return:
    """

    #help(ess.SpectralContrast)
    """ orig
    M = 1024
    N = 1024
    H = 512
    fs = 44100
    W = 'hann'
    """
    """ freesound
    Real sampleRate = 44100;
    int frameSize =   2048;
    int hopSize =     1024;
    int zeroPadding = 0;

    string silentFrames ="noise";
    string windowType = "blackmanharris62";

    // Silence Rate
    Real thresholds_dB[] = { -20, -30, -60 };
    vector<Real> thresholds(ARRAY_SIZE(thresholds_dB));
    for (uint i=0; i<thresholds.size(); i++) {
        thresholds[i] = db2lin(thresholds_dB[i]/2.0);
    }


    """

    M = 2048
    N = 2048
    H = 1024
    fs = 44100

    W = 'blackmanharris62'
    #silentFrames = "noise"
    #thresholds_dB = np.array([ -20, -30, -60 ])
    #thresholds = np.power (10.0, thresholds_dB / 20)

    #spectrum = ess.Spectrum(size=N)
    spectrum = ess.Spectrum()
    #window = ess.Windowing(size=M, type=W)
    window = ess.Windowing(type=W)
    #mfcc = ess.MFCC(numberCoefficients=12, inputSize=N/2+1)
    mfcc = ess.MFCC()

    spectral_peaks = ess.SpectralPeaks(minFrequency=1,
                                       maxFrequency=20000,
                                       maxPeaks=100,
                                       sampleRate=fs,
                                       magnitudeThreshold=0,
                                       orderBy="magnitude")

    dissonance = ess.Dissonance()

    #pitch_detection = ess.PitchYinFFT(frameSize=M, sampleRate=fs)
    pitch_detection = ess.PitchYinFFT()

    harmonic_peaks = ess.HarmonicPeaks()

    inharmonicity = ess.Inharmonicity()

    #spectral_contrast = ess.SpectralContrast(sampleRate=fs)
    spectral_contrast = ess.SpectralContrast()

    centroid = ess.Centroid()

    log_attack_time = ess.LogAttackTime()

    hfc = ess.HFC()

    energy = ess.Energy()

    x = ess.MonoLoader(filename=inputAudioFile, sampleRate=fs)()
    frames = ess.FrameGenerator(x, frameSize=M, hopSize=H, startFromZero=True)
    pool = es.Pool()
    for frame in frames:
        mX = spectrum(window(frame))
        mfcc_bands, mfcc_coeffs = mfcc(mX)

        pool.add('lowlevel.mfcc', mfcc_coeffs)
        pool.add('lowlevel.mfcc_bands', mfcc_bands)

        pfreq, pmag = spectral_peaks(mX)

        inds = pfreq.argsort()
        pfreq_sorted = pfreq[inds]
        pmag_sorted = pmag[inds]

        diss = dissonance(pfreq_sorted, pmag_sorted)
        pool.add('lowlevel.dissonance', diss)

        pitch, pitch_confidence = pitch_detection(mX)

        phfreq, phmag = harmonic_peaks(pfreq_sorted, pmag_sorted, pitch)
        if len(phfreq) > 1:
            inharm = inharmonicity(phfreq, phmag)
            pool.add('sfx.inharmonicity', inharm)

        sc_coeffs, sc_valleys = spectral_contrast(mX)
        pool.add('lowlevel.spectral_contrast', sc_coeffs)

        c = centroid(mX)
        pool.add('lowlevel.spectral_centroid', c)

        lat = log_attack_time(frame)
        pool.add('sfx.logattacktime', lat)

        h = hfc(mX)
        pool.add('lowlevel.hfc', h)

    calc_Mean_Var = ess.PoolAggregator(defaultStats=['mean', 'var'])
    aggrPool = calc_Mean_Var(pool)

    features = makeFeatures(aggrPool)
    json.dump(features, open(outputJsonFile, 'w'))
Example #7
0
def compute(audio, pool, options):
    INFO('Computing SFX descriptors...')

    # analysis parameters
    sampleRate = options['sampleRate']
    frameSize = options['frameSize']
    hopSize = options['hopSize']
    windowType = options['windowType']

    # frame algorithms
    frames = ess.FrameGenerator(audio=audio,
                                frameSize=frameSize,
                                hopSize=hopSize)
    window = ess.Windowing(size=frameSize, zeroPadding=0, type=windowType)
    spectrum = ess.Spectrum(size=frameSize)

    # pitch algorithm
    pitch_detection = ess.PitchYinFFT(frameSize=2048, sampleRate=sampleRate)

    # sfx descriptors
    spectral_peaks = ess.SpectralPeaks(sampleRate=sampleRate,
                                       orderBy='frequency')
    harmonic_peaks = ess.HarmonicPeaks()
    inharmonicity = ess.Inharmonicity()
    odd2evenharmonicenergyratio = ess.OddToEvenHarmonicEnergyRatio()
    tristimulus = ess.Tristimulus()

    # used for a nice progress display
    total_frames = frames.num_frames()
    n_frames = 0
    start_of_frame = -frameSize * 0.5
    progress = Progress(total=total_frames)

    for frame in frames:

        frameScope = [
            start_of_frame / sampleRate,
            (start_of_frame + frameSize) / sampleRate
        ]
        # pool.setCurrentScope(frameScope)

        if options['skipSilence'] and es.isSilent(frame):
            total_frames -= 1
            start_of_frame += hopSize
            continue

        frame_windowed = window(frame)
        frame_spectrum = spectrum(frame_windowed)

        # pitch descriptors
        frame_pitch, frame_pitch_confidence = pitch_detection(frame_spectrum)

        # spectral peaks based descriptors
        frame_frequencies, frame_magnitudes = spectral_peaks(frame_spectrum)

        # ERROR CORRECTION - hoinx 2015-12
        errIdx = np.where(frame_frequencies < 1)
        frame_frequencies = np.delete(frame_frequencies, errIdx)
        frame_magnitudes = np.delete(frame_magnitudes, errIdx)

        (frame_harmonic_frequencies,
         frame_harmonic_magnitudes) = harmonic_peaks(frame_frequencies,
                                                     frame_magnitudes,
                                                     frame_pitch)
        if len(frame_harmonic_frequencies) > 1:
            frame_inharmonicity = inharmonicity(frame_harmonic_frequencies,
                                                frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'inharmonicity', frame_inharmonicity)
            frame_tristimulus = tristimulus(frame_harmonic_frequencies,
                                            frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'tristimulus', frame_tristimulus)
            frame_odd2evenharmonicenergyratio = odd2evenharmonicenergyratio(
                frame_harmonic_frequencies, frame_harmonic_magnitudes)
            pool.add(namespace + '.' + 'odd2evenharmonicenergyratio',
                     frame_odd2evenharmonicenergyratio)

        # display of progress report
        progress.update(n_frames)

        n_frames += 1
        start_of_frame += hopSize

    envelope = ess.Envelope()
    file_envelope = envelope(audio)

    # temporal statistics
    decrease = ess.Decrease()
    pool.add(namespace + '.' + 'temporal_decrease',
             decrease(file_envelope))  # , pool.GlobalScope)

    centralmoments = ess.CentralMoments()
    file_centralmoments = centralmoments(file_envelope)

    distributionshape = ess.DistributionShape()
    (file_spread, file_skewness,
     file_kurtosis) = distributionshape(file_centralmoments)
    pool.add(namespace + '.' + 'temporal_spread',
             file_spread)  # , pool.GlobalScope)
    pool.add(namespace + '.' + 'temporal_skewness',
             file_skewness)  # , pool.GlobalScope)
    pool.add(namespace + '.' + 'temporal_kurtosis',
             file_kurtosis)  # , pool.GlobalScope)

    centroid = ess.Centroid()
    pool.add(namespace + '.' + 'temporal_centroid',
             centroid(file_envelope))  # , pool.GlobalScope)

    # effective duration
    effectiveduration = ess.EffectiveDuration()
    pool.add(namespace + '.' + 'effective_duration',
             effectiveduration(file_envelope))  # , pool.GlobalScope)

    # log attack time
    logattacktime = ess.LogAttackTime()
    pool.add(namespace + '.' + 'logattacktime',
             logattacktime(audio))  # , pool.GlobalScope)

    # strong decay
    strongdecay = ess.StrongDecay()
    pool.add(namespace + '.' + 'strongdecay',
             strongdecay(file_envelope))  # , pool.GlobalScope)

    # dynamic profile
    flatness = ess.FlatnessSFX()
    pool.add(namespace + '.' + 'flatness',
             flatness(file_envelope))  # , pool.GlobalScope)
    """
    # onsets number
    onsets_number = len(pool['rhythm.onset_times'][0])
    pool.add(namespace + '.' + 'onsets_number', onsets_number)  # , pool.GlobalScope)
    """

    # morphological descriptors
    max_to_total = ess.MaxToTotal()
    pool.add(namespace + '.' + 'max_to_total',
             max_to_total(file_envelope))  # , pool.GlobalScope)

    tc_to_total = ess.TCToTotal()
    pool.add(namespace + '.' + 'tc_to_total',
             tc_to_total(file_envelope))  # , pool.GlobalScope)

    derivativeSFX = ess.DerivativeSFX()
    (der_av_after_max, max_der_before_max) = derivativeSFX(file_envelope)
    pool.add(namespace + '.' + 'der_av_after_max',
             der_av_after_max)  # , pool.GlobalScope)
    pool.add(namespace + '.' + 'max_der_before_max',
             max_der_before_max)  # , pool.GlobalScope)

    # pitch profile
    """
    pitch = pool['lowlevel.pitch']

    if len(pitch) > 1:
        pool.add(namespace + '.' + 'pitch_max_to_total', max_to_total(pitch))  # , pool.GlobalScope)

        min_to_total = ess.MinToTotal()
        pool.add(namespace + '.' + 'pitch_min_to_total', min_to_total(pitch))  # , pool.GlobalScope)

        pitch_centroid = ess.Centroid(range=len(pitch) - 1)
        pool.add(namespace + '.' + 'pitch_centroid', pitch_centroid(pitch))  # , pool.GlobalScope)

        pitch_after_max_to_before_max_energy_ratio = ess.AfterMaxToBeforeMaxEnergyRatio()
        pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio',
                 pitch_after_max_to_before_max_energy_ratio(pitch))  # , pool.GlobalScope)

    else:
        pool.add(namespace + '.' + 'pitch_max_to_total', 0.0)  # , pool.GlobalScope)
        pool.add(namespace + '.' + 'pitch_min_to_total', 0.0)  # , pool.GlobalScope)
        pool.add(namespace + '.' + 'pitch_centroid', 0.0)  # , pool.GlobalScope)
        pool.add(namespace + '.' + 'pitch_after_max_to_before_max_energy_ratio', 0.0)  # , pool.GlobalScope)
    """

    progress.finish()
Example #8
0
def extractFeatures(audio_data):
    """
  Recebe um vetor de reais representando um sinal de áudio, calcula suas 
  features, agrega-as em uma Pool() de essentia e retorna esta Pool
  """
    from numpy import ndarray
    assert (type(audio_data) is ndarray)
    assert ("float" in str(audio_data.dtype))

    #Inicia Pool()
    output_pool = es.Pool()

    #Calcula espectro do sinal
    output_pool.set(pk_spectrum, es_mode.Spectrum()(audio_data))

    #Calcula EnergyBandRatio
    energy_band_ratio = es_mode.EnergyBandRatio()(output_pool[pk_spectrum])
    output_pool.set(pk_energy_band_ratio, energy_band_ratio)

    #Calcula MaxMagFreq
    max_mag_freq = es_mode.MaxMagFreq()(output_pool[pk_spectrum])
    output_pool.set(pk_max_mag_freq, max_mag_freq)

    #Calcula SpectralCentroidTime
    spectral_centroid_time = es_mode.SpectralCentroidTime()(audio_data)
    output_pool.set(pk_spectral_centroid_time, spectral_centroid_time)

    #Calcula SpectralComplexity
    spectral_complexity = es_mode.SpectralComplexity()(
        output_pool[pk_spectrum])
    output_pool.set(pk_spectral_complexity, spectral_complexity)

    #Calcula StrongPeak
    strong_peak = es_mode.StrongPeak()(output_pool[pk_spectrum])
    output_pool.set(pk_strong_peak, strong_peak)

    #Calcula SpectralPeaks
    sp_freq, sp_mag = es_mode.SpectralPeaks()(output_pool[pk_spectrum])
    #corta o DC, se houver, e pedido de HarmonicPeaks
    if sp_freq[0] == 0:
        sp_freq = sp_freq[1:]
        sp_mag = sp_mag[1:]
    output_pool.set(pk_spectral_peaks_freq, sp_freq)
    output_pool.set(pk_spectral_peaks_mag, sp_mag)

    ######################################
    #       Para Inharmonicity           #
    ######################################
    #Calcula PitchYinFFT
    pitch_yin_fft, pitch_prob_yin_fft = es_mode.PitchYinFFT()(
        output_pool[pk_spectrum])
    output_pool.set(pk_pitch, pitch_yin_fft)
    output_pool.set(pk_pitch_prob, pitch_prob_yin_fft)

    #Calcula HarmonicPeaks
    hp_freq, hp_mag = es_mode.HarmonicPeaks()(output_pool[pk_spectral_peaks_freq],\
                                              output_pool[pk_spectral_peaks_mag],\
                                              output_pool[pk_pitch] )
    output_pool.set(pk_harmonic_peaks_freq, hp_freq)
    output_pool.set(pk_harmonic_peaks_mag, hp_mag)

    #Calcula Inharmonicity
    inharmonicity = es_mode.Inharmonicity()(output_pool[pk_harmonic_peaks_freq],\
                                            output_pool[pk_harmonic_peaks_mag])
    output_pool.set(pk_inharmonicity, inharmonicity)

    #Acaba Inharmonicity#####################################

    #Calcula SpectralContrast
    frame_size = 2 * (output_pool[pk_spectrum].size - 1)
    spectral_contrast, spectral_valley = \
        es_mode.SpectralContrast(frameSize=frame_size)(output_pool[pk_spectrum])
    output_pool.set(pk_spectral_contrast, spectral_contrast)
    output_pool.set(pk_spectral_valley, spectral_valley)

    #Calcula SpectralWhitening
    spectral_whitening = \
                es_mode.SpectralWhitening()(output_pool[pk_spectrum],\
                                            output_pool[pk_spectral_peaks_freq],\
                                            output_pool[pk_spectral_peaks_mag])
    output_pool.set(pk_spectral_whitening, spectral_whitening)

    return output_pool