def analHpsModelStreaming(params, signal): #out = numpy.array(0) pool = essentia.Pool() fcut = es.FrameCutter(frameSize=params['frameSize'], hopSize=params['hopSize'], startFromZero=False) w = es.Windowing(type="blackmanharris92") spec = es.Spectrum(size=params['frameSize']) # pitch detection pitchDetect = es.PitchYinFFT(frameSize=params['frameSize'], sampleRate=params['sampleRate']) smanal = es.HpsModelAnal(sampleRate=params['sampleRate'], hopSize=params['hopSize'], maxnSines=params['maxnSines'], magnitudeThreshold=params['magnitudeThreshold'], freqDevOffset=params['freqDevOffset'], freqDevSlope=params['freqDevSlope'], minFrequency=params['minFrequency'], maxFrequency=params['maxFrequency'], stocf=params['stocf']) # add half window of zeros to input signal to reach same ooutput length signal = numpy.append(signal, zeros(params['frameSize'] // 2)) insignal = VectorInput (signal) # analysis insignal.data >> fcut.signal fcut.frame >> w.frame w.frame >> spec.frame spec.spectrum >> pitchDetect.spectrum fcut.frame >> smanal.frame pitchDetect.pitch >> smanal.pitch pitchDetect.pitch >> (pool, 'pitch') pitchDetect.pitchConfidence >> (pool, 'pitchConfidence') smanal.magnitudes >> (pool, 'magnitudes') smanal.frequencies >> (pool, 'frequencies') smanal.phases >> (pool, 'phases') smanal.stocenv >> (pool, 'stocenv') essentia.run(insignal) # remove first half window frames mags = pool['magnitudes'] freqs = pool['frequencies'] phases = pool['phases'] pitchConf = pool['pitchConfidence'] # remove short tracks minFrames = int(params['minSineDur'] * params['sampleRate'] / params['hopSize']) freqsClean = cleaningHarmonicTracks(freqs, minFrames, pitchConf) pool['frequencies'].data = freqsClean return mags, freqsClean, phases
def analsynthHpsModelStreaming(params, signal): out = array([0.]) pool = essentia.Pool() # windowing and FFT fcut = es.FrameCutter(frameSize=params['frameSize'], hopSize=params['hopSize'], startFromZero=False) w = es.Windowing(type="blackmanharris92") spec = es.Spectrum(size=params['frameSize']) # pitch detection pitchDetect = es.PitchYinFFT(frameSize=params['frameSize'], sampleRate=params['sampleRate']) smanal = es.HpsModelAnal(sampleRate=params['sampleRate'], hopSize=params['hopSize'], maxnSines=params['maxnSines'], magnitudeThreshold=params['magnitudeThreshold'], freqDevOffset=params['freqDevOffset'], freqDevSlope=params['freqDevSlope'], minFrequency=params['minFrequency'], maxFrequency=params['maxFrequency'], stocf=params['stocf']) synFFTSize = min( int(params['frameSize'] / 4), 4 * params['hopSize']) # make sure the FFT size is appropriate smsyn = es.SpsModelSynth(sampleRate=params['sampleRate'], fftSize=synFFTSize, hopSize=params['hopSize'], stocf=params['stocf']) # add half window of zeros to input signal to reach same ooutput length signal = numpy.append(signal, zeros(params['frameSize'] / 2)) insignal = VectorInput(signal) # analysis insignal.data >> fcut.signal fcut.frame >> w.frame w.frame >> spec.frame spec.spectrum >> pitchDetect.spectrum fcut.frame >> smanal.frame pitchDetect.pitch >> smanal.pitch pitchDetect.pitchConfidence >> (pool, 'pitchConfidence') pitchDetect.pitch >> (pool, 'pitch') # synthesis smanal.magnitudes >> smsyn.magnitudes smanal.frequencies >> smsyn.frequencies smanal.phases >> smsyn.phases smanal.stocenv >> smsyn.stocenv smsyn.frame >> (pool, 'frames') smsyn.sineframe >> (pool, 'sineframes') smsyn.stocframe >> (pool, 'stocframes') essentia.run(insignal) outaudio = framesToAudio(pool['frames']) outaudio = outaudio[2 * params['hopSize']:] return outaudio, pool