def _get_derivative_flatten(registry, primary_key, params, func_eval, derivative_eval): # gradient case if primary_key == "value": def derivative_flatten(derivative_eval): flat = np.array( tree_just_flatten(derivative_eval, registry=registry) ).astype(float) return flat # jacobian case else: key, _ = _get_best_key_and_aggregator(primary_key, func_eval) def derivative_flatten(derivative_eval): flat = block_tree_to_matrix( derivative_eval, outer_tree=func_eval[key], inner_tree=params, ) return flat if derivative_eval is not None: try: derivative_flatten(derivative_eval) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "The output of derivative and criterion cannot be aligned." raise InvalidFunctionError(msg) from e return derivative_flatten
def _get_best_key_and_aggregator(needed_key, available_keys): if needed_key in available_keys: key = needed_key if needed_key == "value": aggregate = lambda x: float(x[0]) else: aggregate = lambda x: np.array(x).astype(float) elif needed_key == "contributions" and "root_contributions" in available_keys: key = "root_contributions" aggregate = lambda x: np.array(x).astype(float) ** 2 elif needed_key == "value" and "contributions" in available_keys: key = "contributions" aggregate = lambda x: float(np.sum(x)) elif needed_key == "value" and "root_contributions" in available_keys: key = "root_contributions" aggregate = lambda x: float((np.array(x) ** 2).sum()) else: msg = ( "The optimizer you requested requires a criterion function that returns " f"a dictionary with the entry '{needed_key}'. Your function returns a " f"dictionary that only contains the entries {available_keys}." ) raise InvalidFunctionError(msg) return key, aggregate
def _get_func_flatten(registry, func_eval, primary_key): if isscalar(func_eval): if primary_key == "value": func_flatten = lambda func_eval: float(func_eval) else: msg = ( "criterion returns a scalar value but the requested optimizer " "requires a vector or pytree output. criterion can either return this " f"output alone or inside a dictionary with the key {primary_key}." ) raise InvalidFunctionError(msg) elif not isinstance(func_eval, dict): raise ValueError() # xxxx else: key, aggregate = _get_best_key_and_aggregator(primary_key, func_eval) def func_flatten(func_eval): # the if condition is necessary, such that we can also accept func_evals # where the primary entry has already been extracted. This is for example # necessary if the criterion_and_derivative returns only the relevant # entry of criterion, whereas criterion returns a dict. if isinstance(func_eval, dict) and key in func_eval: func_eval = func_eval[key] return aggregate(tree_just_flatten(func_eval, registry=registry)) return func_flatten
def process_func_of_params(func, kwargs, name="your function", skip_checks=False): # fast path if skip_checks and kwargs in (None, {}): return func kept, ignored = filter_kwargs(func, kwargs) if ignored: possibilities = [ p for p in inspect.signature(func).parameters if p != "params" ] proposals = [ propose_alternatives(arg, possibilities, 1)[0] for arg in ignored ] msg = ( "The following user provided keyword arguments are not compatible with " f"{name}:\n\n") for arg, prop in zip(ignored, proposals): msg += f"{arg}: Did you mean {prop}?" raise InvalidKwargsError(msg) out = partial(func, **kept) if not skip_checks: unpartialled_args = get_unpartialled_arguments(out) no_default_args = get_arguments_without_default(out) no_free_argument_left = len(unpartialled_args) < 1 if no_free_argument_left and kept: raise InvalidKwargsError( f"Too many keyword arguments for {name}. After applying all keyword " "arguments there must be at least one free argument (the params) left." ) elif no_free_argument_left: raise InvalidFunctionError( f"{name} must have at least one free argument.") required_args = unpartialled_args.intersection(no_default_args) too_many_required_arguments = len(required_args) > 1 # Try to discover if we have a jax calculated jacobian that has a weird # signature that would not pass this test: skip_because_of_jax = required_args == {"args", "kwargs"} if too_many_required_arguments and not skip_because_of_jax: raise InvalidKwargsError( f"Too few keyword arguments for {name}. After applying all keyword " "arguments at most one required argument (the params) should remain. " "in your case the following required arguments remain: " f"{required_args}.") return out
def estimate_ml( loglike, params, optimize_options, *, lower_bounds=None, upper_bounds=None, constraints=None, logging=False, log_options=None, loglike_kwargs=None, numdiff_options=None, jacobian=None, jacobian_kwargs=None, hessian=None, hessian_kwargs=None, design_info=None, ): """Do a maximum likelihood (ml) estimation. This is a high level interface of our lower level functions for maximization, numerical differentiation and inference. It does the full workflow for maximum likelihood estimation with just one function call. While we have good defaults, you can still configure each aspect of each step via the optional arguments of this function. If you find it easier to do the maximization separately, you can do so and just provide the optimal parameters as ``params`` and set ``optimize_options=False`` Args: loglike (callable): Likelihood function that takes a params (and potentially other keyword arguments) and returns a dictionary that has at least the entries "value" (a scalar float) and "contributions" (a 1d numpy array or pytree) with the log likelihood contribution per individual. params (pytree): A pytree containing the estimated or start parameters of the likelihood model. If the supplied parameters are estimated parameters, set optimize_options to False. Pytrees can be a numpy array, a pandas Series, a DataFrame with "value" column, a float and any kind of (nested) dictionary or list containing these elements. See :ref:`params` for examples. optimize_options (dict, str or False): Keyword arguments that govern the numerical optimization. Valid entries are all arguments of :func:`~estimagic.optimization.optimize.minimize` except for those that are passed explicilty to ``estimate_ml``. If you pass False as optimize_options you signal that ``params`` are already the optimal parameters and no numerical optimization is needed. If you pass a str as optimize_options it is used as the ``algorithm`` option. lower_bounds (pytree): A pytree with the same structure as params with lower bounds for the parameters. Can be ``-np.inf`` for parameters with no lower bound. upper_bounds (pytree): As lower_bounds. Can be ``np.inf`` for parameters with no upper bound. constraints (list, dict): List with constraint dictionaries or single dict. See :ref:`constraints`. logging (pathlib.Path, str or False): Path to sqlite3 file (which typically has the file extension ``.db``. If the file does not exist, it will be created. The dashboard can only be used when logging is used. log_options (dict): Additional keyword arguments to configure the logging. - "fast_logging": A boolean that determines if "unsafe" settings are used to speed up write processes to the database. This should only be used for very short running criterion functions where the main purpose of the log is a real-time dashboard and it would not be catastrophic to get a corrupted database in case of a sudden system shutdown. If one evaluation of the criterion function (and gradient if applicable) takes more than 100 ms, the logging overhead is negligible. - "if_table_exists": (str) One of "extend", "replace", "raise". What to do if the tables we want to write to already exist. Default "extend". - "if_database_exists": (str): One of "extend", "replace", "raise". What to do if the database we want to write to already exists. Default "extend". loglike_kwargs (dict): Additional keyword arguments for loglike. numdiff_options (dict): Keyword arguments for the calculation of numerical derivatives for the calculation of standard errors. See :ref:`first_derivative` for details. jacobian (callable or None): A function that takes ``params`` and potentially other keyword arguments and returns the jacobian of loglike["contributions"] with respect to the params. Note that you only need to pass a Jacobian function if you have a closed form Jacobian. If you pass None, a numerical Jacobian will be calculated. jacobian_kwargs (dict): Additional keyword arguments for the Jacobian function. hessian (callable or None or False): A function that takes ``params`` and potentially other keyword arguments and returns the Hessian of loglike["value"] with respect to the params. If you pass None, a numerical Hessian will be calculated. If you pass ``False``, you signal that no Hessian should be calculated. Thus, no result that requires the Hessian will be calculated. hessian_kwargs (dict): Additional keyword arguments for the Hessian function. design_info (pandas.DataFrame): DataFrame with one row per observation that contains some or all of the variables "psu" (primary sampling unit), "strata" and "fpc" (finite population corrector). See :ref:`robust_likelihood_inference` for details. Returns: LikelihoodResult: A LikelihoodResult object. """ # ================================================================================== # Check and process inputs # ================================================================================== is_optimized = optimize_options is False if not is_optimized: if isinstance(optimize_options, str): optimize_options = {"algorithm": optimize_options} check_optimization_options( optimize_options, usage="estimate_ml", algorithm_mandatory=True, ) jac_case = get_derivative_case(jacobian) hess_case = get_derivative_case(hessian) check_numdiff_options(numdiff_options, "estimate_ml") numdiff_options = {} if numdiff_options in (None, False) else numdiff_options loglike_kwargs = {} if loglike_kwargs is None else loglike_kwargs constraints = [] if constraints is None else constraints jacobian_kwargs = {} if jacobian_kwargs is None else jacobian_kwargs hessian_kwargs = {} if hessian_kwargs is None else hessian_kwargs # ================================================================================== # Calculate estimates via maximization (if necessary) # ================================================================================== if is_optimized: estimates = params opt_res = None else: opt_res = maximize( criterion=loglike, criterion_kwargs=loglike_kwargs, params=params, lower_bounds=lower_bounds, upper_bounds=upper_bounds, constraints=constraints, logging=logging, log_options=log_options, **optimize_options, ) estimates = opt_res.params # ================================================================================== # Do first function evaluations at estimated parameters # ================================================================================== try: loglike_eval = loglike(estimates, **loglike_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating loglike at estimated params." raise InvalidFunctionError(msg) from e if callable(jacobian): try: jacobian_eval = jacobian(estimates, **jacobian_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating closed form jacobian at estimated params." raise InvalidFunctionError(msg) from e else: jacobian_eval = None if callable(hessian): try: hessian_eval = hessian(estimates, **hessian_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating closed form hessian at estimated params." raise InvalidFunctionError(msg) from e else: hessian_eval = None # ================================================================================== # Get the converter for params and function outputs # ================================================================================== converter, internal_estimates = get_converter( params=estimates, constraints=constraints, lower_bounds=lower_bounds, upper_bounds=upper_bounds, func_eval=loglike_eval, primary_key="contributions", scaling=False, scaling_options=None, derivative_eval=jacobian_eval, ) # ================================================================================== # Calculate internal jacobian # ================================================================================== if jac_case == "closed-form": int_jac = converter.derivative_to_internal(jacobian_eval, internal_estimates.values) elif jac_case == "numerical": def func(x): p = converter.params_from_internal(x) loglike_eval = loglike(p, **loglike_kwargs)["contributions"] out = converter.func_to_internal(loglike_eval) return out jac_res = first_derivative( func=func, params=internal_estimates.values, lower_bounds=internal_estimates.lower_bounds, upper_bounds=internal_estimates.upper_bounds, **numdiff_options, ) int_jac = jac_res["derivative"] else: int_jac = None if constraints in [None, [] ] and jacobian_eval is None and int_jac is not None: loglike_contribs = loglike_eval if isinstance(loglike_contribs, dict) and "contributions" in loglike_contribs: loglike_contribs = loglike_contribs["contributions"] jacobian_eval = matrix_to_block_tree( int_jac, outer_tree=loglike_contribs, inner_tree=estimates, ) if jacobian_eval is None: _no_jac_reason = ( "no closed form jacobian was provided and there are constraints") else: _no_jac_reason = None # ================================================================================== # Calculate internal Hessian # ================================================================================== if hess_case == "skip": int_hess = None elif hess_case == "numerical": def func(x): p = converter.params_from_internal(x) loglike_eval = loglike(p, **loglike_kwargs)["value"] out = converter.func_to_internal(loglike_eval) return out hess_res = second_derivative( func=func, params=internal_estimates.values, lower_bounds=internal_estimates.lower_bounds, upper_bounds=internal_estimates.upper_bounds, **numdiff_options, ) int_hess = hess_res["derivative"] elif hess_case == "closed-form" and constraints: raise NotImplementedError( "Closed-form Hessians are not yet compatible with constraints.") elif hess_case == "closed-form": int_hess = block_tree_to_matrix( hessian_eval, outer_tree=params, inner_tree=params, ) else: raise ValueError() if constraints in [None, [] ] and hessian_eval is None and int_hess is not None: hessian_eval = matrix_to_block_tree( int_hess, outer_tree=params, inner_tree=params, ) if hessian_eval is None: if hess_case == "skip": _no_hess_reason = "the hessian calculation was explicitly skipped." else: _no_hess_reason = ( "no closed form hessian was provided and there are constraints" ) else: _no_hess_reason = None # ================================================================================== # create a LikelihoodResult object # ================================================================================== free_estimates = calculate_free_estimates(estimates, internal_estimates) res = LikelihoodResult( _params=estimates, _converter=converter, _optimize_result=opt_res, _jacobian=jacobian_eval, _no_jacobian_reason=_no_jac_reason, _hessian=hessian_eval, _no_hessian_reason=_no_hess_reason, _internal_jacobian=int_jac, _internal_hessian=int_hess, _design_info=design_info, _internal_estimates=internal_estimates, _free_estimates=free_estimates, _has_constraints=constraints not in [None, []], ) return res
def estimate_msm( simulate_moments, empirical_moments, moments_cov, params, optimize_options, *, lower_bounds=None, upper_bounds=None, constraints=None, logging=False, log_options=None, simulate_moments_kwargs=None, weights="diagonal", numdiff_options=None, jacobian=None, jacobian_kwargs=None, ): """Do a method of simulated moments or indirect inference estimation. This is a high level interface for our lower level functions for minimization, numerical differentiation, inference and sensitivity analysis. It does the full workflow for MSM or indirect inference estimation with just one function call. While we have good defaults, you can still configure each aspect of each steps vial the optional arguments of this functions. If you find it easier to do the minimization separately, you can do so and just provide the optimal parameters as ``params`` and set ``optimize_options=False``. Args: simulate_moments (callable): Function that takes params and potentially other keyword arguments and returns a pytree with simulated moments. If the function returns a dict containing the key ``"simulated_moments"`` we only use the value corresponding to that key. Other entries are stored in the log database if you use logging. empirical_moments (pandas.Series): A pytree with the same structure as the result of ``simulate_moments``. moments_cov (pandas.DataFrame): A block-pytree containing the covariance matrix of the empirical moments. This is typically calculated with our ``get_moments_cov`` function. params (pytree): A pytree containing the estimated or start parameters of the model. If the supplied parameters are estimated parameters, set optimize_options to False. Pytrees can be a numpy array, a pandas Series, a DataFrame with "value" column, a float and any kind of (nested) dictionary or list containing these elements. See :ref:`params` for examples. optimize_options (dict, str or False): Keyword arguments that govern the numerical optimization. Valid entries are all arguments of :func:`~estimagic.optimization.optimize.minimize` except for those that can be passed explicitly to ``estimate_msm``. If you pass False as ``optimize_options`` you signal that ``params`` are already the optimal parameters and no numerical optimization is needed. If you pass a str as optimize_options it is used as the ``algorithm`` option. lower_bounds (pytree): A pytree with the same structure as params with lower bounds for the parameters. Can be ``-np.inf`` for parameters with no lower bound. upper_bounds (pytree): As lower_bounds. Can be ``np.inf`` for parameters with no upper bound. simulate_moments_kwargs (dict): Additional keyword arguments for ``simulate_moments``. weights (str): One of "diagonal" (default), "identity" or "optimal". Note that "optimal" refers to the asymptotically optimal weighting matrix and is often not a good choice due to large finite sample bias. constraints (list, dict): List with constraint dictionaries or single dict. See :ref:`constraints`. logging (pathlib.Path, str or False): Path to sqlite3 file (which typically has the file extension ``.db``. If the file does not exist, it will be created. The dashboard can only be used when logging is used. log_options (dict): Additional keyword arguments to configure the logging. - "fast_logging" (bool): A boolean that determines if "unsafe" settings are used to speed up write processes to the database. This should only be used for very short running criterion functions where the main purpose of the log is a real-time dashboard and it would not be catastrophic to get a corrupted database in case of a sudden system shutdown. If one evaluation of the criterion function (and gradient if applicable) takes more than 100 ms, the logging overhead is negligible. - "if_table_exists" (str): One of "extend", "replace", "raise". What to do if the tables we want to write to already exist. Default "extend". - "if_database_exists" (str): One of "extend", "replace", "raise". What to do if the database we want to write to already exists. Default "extend". numdiff_options (dict): Keyword arguments for the calculation of numerical derivatives for the calculation of standard errors. See :ref:`first_derivative` for details. Note that by default we increase the step_size by a factor of 2 compared to the rule of thumb for optimal step sizes. This is because many msm criterion functions are slightly noisy. jacobian (callable): A function that take ``params`` and potentially other keyword arguments and returns the jacobian of simulate_moments with respect to the params. jacobian_kwargs (dict): Additional keyword arguments for the jacobian function. Returns: dict: The estimated parameters, standard errors and sensitivity measures and covariance matrix of the parameters. """ # ================================================================================== # Check and process inputs # ================================================================================== if weights not in ["diagonal", "optimal"]: raise NotImplementedError( "Custom weighting matrices are not yet implemented.") is_optimized = optimize_options is False if not is_optimized: if isinstance(optimize_options, str): optimize_options = {"algorithm": optimize_options} check_optimization_options( optimize_options, usage="estimate_msm", algorithm_mandatory=True, ) jac_case = get_derivative_case(jacobian) check_numdiff_options(numdiff_options, "estimate_msm") numdiff_options = {} if numdiff_options in ( None, False) else numdiff_options.copy() if "scaling_factor" not in numdiff_options: numdiff_options["scaling_factor"] = 2 weights, internal_weights = get_weighting_matrix( moments_cov=moments_cov, method=weights, empirical_moments=empirical_moments, return_type="pytree_and_array", ) internal_moments_cov = block_tree_to_matrix( moments_cov, outer_tree=empirical_moments, inner_tree=empirical_moments, ) constraints = [] if constraints is None else constraints jacobian_kwargs = {} if jacobian_kwargs is None else jacobian_kwargs simulate_moments_kwargs = ({} if simulate_moments_kwargs is None else simulate_moments_kwargs) # ================================================================================== # Calculate estimates via minimization (if necessary) # ================================================================================== if is_optimized: estimates = params opt_res = None else: funcs = get_msm_optimization_functions( simulate_moments=simulate_moments, empirical_moments=empirical_moments, weights=weights, simulate_moments_kwargs=simulate_moments_kwargs, # Always pass None because we do not support closed form jacobians during # optimization yet. Otherwise we would get a NotImplementedError jacobian=None, jacobian_kwargs=jacobian_kwargs, ) opt_res = minimize( lower_bounds=lower_bounds, upper_bounds=upper_bounds, constraints=constraints, logging=logging, log_options=log_options, params=params, **funcs, # contains the criterion func and possibly more **optimize_options, ) estimates = opt_res.params # ================================================================================== # do first function evaluations # ================================================================================== try: sim_mom_eval = simulate_moments(estimates, **simulate_moments_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating simulate_moments at estimated params." raise InvalidFunctionError(msg) from e if callable(jacobian): try: jacobian_eval = jacobian(estimates, **jacobian_kwargs) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating derivative at estimated params." raise InvalidFunctionError(msg) from e else: jacobian_eval = None # ================================================================================== # get converter for params and function outputs # ================================================================================== def helper(params): raw = simulate_moments(params, **simulate_moments_kwargs) if isinstance(raw, dict) and "simulated_moments" in raw: out = {"contributions": raw["simulated_moments"]} else: out = {"contributions": raw} return out if isinstance(sim_mom_eval, dict) and "simulated_moments" in sim_mom_eval: func_eval = {"contributions": sim_mom_eval["simulated_moments"]} else: func_eval = {"contributions": sim_mom_eval} converter, internal_estimates = get_converter( params=estimates, constraints=constraints, lower_bounds=lower_bounds, upper_bounds=upper_bounds, func_eval=func_eval, primary_key="contributions", scaling=False, scaling_options=None, derivative_eval=jacobian_eval, ) # ================================================================================== # Calculate internal jacobian # ================================================================================== if jac_case == "closed-form": x = converter.params_to_internal(estimates) int_jac = converter.derivative_to_internal(jacobian_eval, x) else: def func(x): p = converter.params_from_internal(x) sim_mom_eval = helper(p) out = converter.func_to_internal(sim_mom_eval) return out int_jac = first_derivative( func=func, params=internal_estimates.values, lower_bounds=internal_estimates.lower_bounds, upper_bounds=internal_estimates.upper_bounds, **numdiff_options, )["derivative"] # ================================================================================== # Calculate external jac (if no constraints and not closed form ) # ================================================================================== if constraints in [None, [] ] and jacobian_eval is None and int_jac is not None: jacobian_eval = matrix_to_block_tree( int_jac, outer_tree=empirical_moments, inner_tree=estimates, ) if jacobian_eval is None: _no_jac_reason = ( "no closed form jacobian was provided and there are constraints") else: _no_jac_reason = None # ================================================================================== # Create MomentsResult # ================================================================================== free_estimates = calculate_free_estimates(estimates, internal_estimates) res = MomentsResult( _params=estimates, _weights=weights, _converter=converter, _internal_weights=internal_weights, _internal_moments_cov=internal_moments_cov, _internal_jacobian=int_jac, _jacobian=jacobian_eval, _no_jacobian_reason=_no_jac_reason, _empirical_moments=empirical_moments, _internal_estimates=internal_estimates, _free_estimates=free_estimates, _has_constraints=constraints not in [None, []], ) return res
def _optimize( direction, criterion, params, algorithm, *, lower_bounds=None, upper_bounds=None, soft_lower_bounds=None, soft_upper_bounds=None, criterion_kwargs, constraints, algo_options, derivative, derivative_kwargs, criterion_and_derivative, criterion_and_derivative_kwargs, numdiff_options, logging, log_options, error_handling, error_penalty, scaling, scaling_options, multistart, multistart_options, collect_history, skip_checks, ): """Minimize or maximize criterion using algorithm subject to constraints. Arguments are the same as in maximize and minimize, with an additional direction argument. Direction is a string that can take the values "maximize" and "minimize". Returns are the same as in maximize and minimize. """ # ================================================================================== # Set default values and check options # ================================================================================== criterion_kwargs = _setdefault(criterion_kwargs, {}) constraints = _setdefault(constraints, []) algo_options = _setdefault(algo_options, {}) derivative_kwargs = _setdefault(derivative_kwargs, {}) criterion_and_derivative_kwargs = _setdefault(criterion_and_derivative_kwargs, {}) numdiff_options = _setdefault(numdiff_options, {}) log_options = _setdefault(log_options, {}) scaling_options = _setdefault(scaling_options, {}) error_penalty = _setdefault(error_penalty, {}) multistart_options = _setdefault(multistart_options, {}) if logging: logging = Path(logging) if not skip_checks: check_optimize_kwargs( direction=direction, criterion=criterion, criterion_kwargs=criterion_kwargs, params=params, algorithm=algorithm, constraints=constraints, algo_options=algo_options, derivative=derivative, derivative_kwargs=derivative_kwargs, criterion_and_derivative=criterion_and_derivative, criterion_and_derivative_kwargs=criterion_and_derivative_kwargs, numdiff_options=numdiff_options, logging=logging, log_options=log_options, error_handling=error_handling, error_penalty=error_penalty, scaling=scaling, scaling_options=scaling_options, multistart=multistart, multistart_options=multistart_options, ) # ================================================================================== # Get the algorithm info # ================================================================================== raw_algo, algo_info = process_user_algorithm(algorithm) algo_kwargs = set(algo_info.arguments) if algo_info.primary_criterion_entry == "root_contributions": if direction == "maximize": msg = ( "Optimizers that exploit a least squares structure like {} can only be " "used for minimization." ) raise ValueError(msg.format(algo_info.name)) # ================================================================================== # Split constraints into nonlinear and reparametrization parts # ================================================================================== if isinstance(constraints, dict): constraints = [constraints] nonlinear_constraints = [c for c in constraints if c["type"] == "nonlinear"] if nonlinear_constraints and "nonlinear_constraints" not in algo_kwargs: raise ValueError( f"Algorithm {algo_info.name} does not support nonlinear constraints." ) # the following constraints will be handled via reparametrization constraints = [c for c in constraints if c["type"] != "nonlinear"] # ================================================================================== # prepare logging # ================================================================================== if logging: problem_data = { "direction": direction, # "criterion"-criterion, "criterion_kwargs": criterion_kwargs, "algorithm": algorithm, "constraints": constraints, "algo_options": algo_options, # "derivative"-derivative, "derivative_kwargs": derivative_kwargs, # "criterion_and_derivative"-criterion_and_derivative, "criterion_and_derivative_kwargs": criterion_and_derivative_kwargs, "numdiff_options": numdiff_options, "log_options": log_options, "error_handling": error_handling, "error_penalty": error_penalty, "params": params, } # ================================================================================== # partial the kwargs into corresponding functions # ================================================================================== criterion = process_func_of_params( func=criterion, kwargs=criterion_kwargs, name="criterion", skip_checks=skip_checks, ) if isinstance(derivative, dict): derivative = derivative.get(algo_info.primary_criterion_entry) if derivative is not None: derivative = process_func_of_params( func=derivative, kwargs=derivative_kwargs, name="derivative", skip_checks=skip_checks, ) if isinstance(criterion_and_derivative, dict): criterion_and_derivative = criterion_and_derivative.get( algo_info.primary_criterion_entry ) if criterion_and_derivative is not None: criterion_and_derivative = process_func_of_params( func=criterion_and_derivative, kwargs=criterion_and_derivative_kwargs, name="criterion_and_derivative", skip_checks=skip_checks, ) # ================================================================================== # Do first evaluation of user provided functions # ================================================================================== try: first_crit_eval = criterion(params) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating criterion at start params." raise InvalidFunctionError(msg) from e # do first derivative evaluation (if given) if derivative is not None: try: first_deriv_eval = derivative(params) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating derivative at start params." raise InvalidFunctionError(msg) from e if criterion_and_derivative is not None: try: first_crit_and_deriv_eval = criterion_and_derivative(params) except (KeyboardInterrupt, SystemExit): raise except Exception as e: msg = "Error while evaluating criterion_and_derivative at start params." raise InvalidFunctionError(msg) from e if derivative is not None: used_deriv = first_deriv_eval elif criterion_and_derivative is not None: used_deriv = first_crit_and_deriv_eval[1] else: used_deriv = None # ================================================================================== # Get the converter (for tree flattening, constraints and scaling) # ================================================================================== converter, internal_params = get_converter( params=params, constraints=constraints, lower_bounds=lower_bounds, upper_bounds=upper_bounds, func_eval=first_crit_eval, primary_key=algo_info.primary_criterion_entry, scaling=scaling, scaling_options=scaling_options, derivative_eval=used_deriv, soft_lower_bounds=soft_lower_bounds, soft_upper_bounds=soft_upper_bounds, add_soft_bounds=multistart, ) # ================================================================================== # initialize the log database # ================================================================================== if logging: problem_data["free_mask"] = internal_params.free_mask database = _create_and_initialize_database(logging, log_options, problem_data) db_kwargs = { "database": database, "path": logging, "fast_logging": log_options.get("fast_logging", False), } else: db_kwargs = {"database": None, "path": None, "fast_logging": False} # ================================================================================== # Do some things that require internal parameters or bounds # ================================================================================== if converter.has_transforming_constraints and multistart: raise NotImplementedError( "multistart optimizations are not yet compatible with transforming " "constraints." ) numdiff_options = _fill_numdiff_options_with_defaults( numdiff_options=numdiff_options, lower_bounds=internal_params.lower_bounds, upper_bounds=internal_params.upper_bounds, ) # get error penalty function error_penalty_func = get_error_penalty_function( error_handling=error_handling, start_x=internal_params.values, start_criterion=converter.func_to_internal(first_crit_eval), error_penalty=error_penalty, primary_key=algo_info.primary_criterion_entry, direction=direction, ) # process nonlinear constraints: internal_constraints = process_nonlinear_constraints( nonlinear_constraints=nonlinear_constraints, params=params, converter=converter, numdiff_options=numdiff_options, skip_checks=skip_checks, ) x = internal_params.values # ================================================================================== # get the internal algorithm # ================================================================================== internal_algorithm = get_final_algorithm( raw_algorithm=raw_algo, algo_info=algo_info, valid_kwargs=algo_kwargs, lower_bounds=internal_params.lower_bounds, upper_bounds=internal_params.upper_bounds, nonlinear_constraints=internal_constraints, algo_options=algo_options, logging=logging, db_kwargs=db_kwargs, collect_history=collect_history, ) # ================================================================================== # partial arguments into the internal_criterion_and_derivative_template # ================================================================================== to_partial = { "direction": direction, "criterion": criterion, "converter": converter, "derivative": derivative, "criterion_and_derivative": criterion_and_derivative, "numdiff_options": numdiff_options, "logging": logging, "db_kwargs": db_kwargs, "algo_info": algo_info, "error_handling": error_handling, "error_penalty_func": error_penalty_func, } internal_criterion_and_derivative = functools.partial( internal_criterion_and_derivative_template, **to_partial, ) problem_functions = {} for task in ["criterion", "derivative", "criterion_and_derivative"]: if task in algo_kwargs: problem_functions[task] = functools.partial( internal_criterion_and_derivative, task=task, ) # ================================================================================== # Do actual optimization # ================================================================================== if not multistart: steps = [{"type": "optimization", "name": "optimization"}] step_ids = log_scheduled_steps_and_get_ids( steps=steps, logging=logging, db_kwargs=db_kwargs, ) raw_res = internal_algorithm(**problem_functions, x=x, step_id=step_ids[0]) else: multistart_options = _fill_multistart_options_with_defaults( options=multistart_options, params=params, x=x, params_to_internal=converter.params_to_internal, ) raw_res = run_multistart_optimization( local_algorithm=internal_algorithm, primary_key=algo_info.primary_criterion_entry, problem_functions=problem_functions, x=x, lower_sampling_bounds=internal_params.soft_lower_bounds, upper_sampling_bounds=internal_params.soft_upper_bounds, options=multistart_options, logging=logging, db_kwargs=db_kwargs, error_handling=error_handling, ) # ================================================================================== # Process the result # ================================================================================== _scalar_start_criterion = aggregate_func_output_to_value( converter.func_to_internal(first_crit_eval), algo_info.primary_criterion_entry, ) fixed_result_kwargs = { "start_criterion": _scalar_start_criterion, "start_params": params, "algorithm": algo_info.name, "direction": direction, "n_free": internal_params.free_mask.sum(), } res = process_internal_optimizer_result( raw_res, converter=converter, primary_key=algo_info.primary_criterion_entry, fixed_kwargs=fixed_result_kwargs, skip_checks=skip_checks, ) return res
def _check_validity_and_return_evaluation(c, params, skip_checks): """Check that nonlinear constraints are valid. Returns: constaint_eval: Evaluation of constraint at params, if skip_checks if False, else None. """ # ================================================================================== # check functions # ================================================================================== if "func" not in c: raise InvalidConstraintError( "Constraint needs to have entry 'fun', representing the constraint " "function.") if not callable(c["func"]): raise InvalidConstraintError( "Entry 'fun' in nonlinear constraints has be callable.") if "derivative" in c and not callable(c["derivative"]): raise InvalidConstraintError( "Entry 'jac' in nonlinear constraints has be callable.") # ================================================================================== # check bounds # ================================================================================== is_equality_constraint = "value" in c if is_equality_constraint: if "lower_bounds" in c or "upper_bounds" in c: raise InvalidConstraintError( "Only one of 'value' or ('lower_bounds', 'upper_bounds') can be " "passed to a nonlinear constraint.") if not is_equality_constraint: if "lower_bounds" not in c and "upper_bounds" not in c: raise InvalidConstraintError( "For inequality constraint at least one of ('lower_bounds', " "'upper_bounds') has to be passed to the nonlinear constraint." ) if "lower_bounds" in c and "upper_bounds" in c: if not np.all( np.array(c["lower_bounds"]) <= np.array(c["upper_bounds"])): raise InvalidConstraintError( "If lower bounds need to less than or equal to upper bounds.") # ================================================================================== # check selector # ================================================================================== if "selector" in c: if not callable(c["selector"]): raise InvalidConstraintError( f"'selector' entry needs to be callable in constraint {c}.") else: try: c["selector"](params) except Exception: raise InvalidFunctionError( "Error when calling 'selector' function on params in constraint " f" {c}") elif "loc" in c: if not isinstance(params, (pd.Series, pd.DataFrame)): raise InvalidConstraintError( "params needs to be pd.Series or pd.DataFrame to use 'loc' selector in " f"in consrtaint {c}.") try: params.loc[c["loc"]] except (KeyError, IndexError): raise InvalidConstraintError("'loc' string is invalid.") elif "query" in c: if not isinstance(params, pd.DataFrame): raise InvalidConstraintError( "params needs to be pd.DataFrame to use 'query' selector in " f"constraints {c}.") try: params.query(c["query"]) except Exception: raise InvalidConstraintError( f"'query' string is invalid in constraint {c}.") # ================================================================================== # check that constraints can be evaluated # ================================================================================== constraint_eval = None if not skip_checks: selector = _process_selector(c) try: constraint_eval = c["func"](selector(params)) except Exception: raise InvalidFunctionError( f"Error when evaluating function of constraint {c}.") return constraint_eval