def model_fit(param):
    print "Training %s" % param[0]
    neural_shape = [param[0], 15, 1]
    X_train = param[1][0]
    y_train = param[1][1]
    X_test = param[1][2]
    y_test = param[1][3]
    acoNet = ACOEstimator(Q=0.08, epsilon=0.55)
    fit_param = {"neural_shape": neural_shape}
    acoNet.fit(X_train, y_train, **fit_param)
    fit_param["weights_matrix"] = acoNet.best_archive
    neuralNet = NeuralFlowRegressor()
    neuralNet.fit(X_train, y_train, **fit_param)
    return param[0], np.sqrt(neuralNet.score(X_test, y_test))
Example #2
0
def model_fit(param):
    print "Training %s"%param[0]
    X_train = param[1][0]
    y_train = param[1][1]
    X_test = param[1][2]
    y_test = param[1][3]
    neural_shape = [y_train.shape[1]*param[0],10,y_train.shape[1]]
    acoNet = ACOEstimator(Q=0.08,epsilon=0.55)
    fit_param = {
        "neural_shape":neural_shape
    }
    acoNet.fit(X_train,y_train,**fit_param)
    fit_param["weights_matrix"] = acoNet.best_archive
    neuralNet = NeuralFlowRegressor()
    neuralNet.fit(X_train,y_train,**fit_param)
    return param[0],np.sqrt(neuralNet.score(X_test,y_test))
Example #3
0
if __name__ == '__main__':
    best_estimator = None
    best_score = np.Inf
    for loop in np.arange(1, 20):
        n_input = 4
        n_periodic = 1
        n_hidden = 15
        neural_shape = [n_input + n_periodic, n_hidden, 1]
        Q = 0.09
        epsilon = 0.55

        dataFeeder = TrafficFeeder()
        X_train, y_train = dataFeeder.fetch_traffic_training(
            n_input, 1, (40, 46))
        X_test, y_test = dataFeeder.fetch_traffic_test(n_input, 1, (46, 48))
        # retrieve = [n_input+1,(X_train,y_train,X_test,y_test)]
        acoNet = ACOEstimator(Q=Q, epsilon=epsilon)
        fit_param = {"neural_shape": neural_shape}
        acoNet.fit(X_train, y_train, **fit_param)
        fit_param["weights_matrix"] = acoNet.best_archive
        neuralNet = NeuralFlowRegressor()
        neuralNet.fit(X_train, y_train, **fit_param)
        y_pred = dataFeeder.convert(neuralNet.predict(X_test))
        score = np.sqrt(mean_squared_error(y_pred, y_test))
        if (score < best_score):
            best_estimator = acoNet
            print score
        # plot_fig(y_pred,y_test)
    print best_score, best_estimator
Example #4
0
from data.TrafficFeeder import TrafficFeeder
from experiments.initializer import *
from utils.SplitTrainTest import SplitTrainTest

param_dicts = {
    "Q": np.arange(0.01, 0.1, step=0.01),
    "epsilon": np.arange(0.1, 1.0, step=0.05)
}
n_sliding_window = 4
n_periodic = 1
n_input = n_sliding_window + n_periodic
neural_shape = [n_input, 15, 1]
dataFeeder = TrafficFeeder()
X, y = dataFeeder.fetch_traffic_training(n_sliding_window, n_periodic,
                                         (40, 46))
estimator = ACOEstimator()
archive_solution = construct_solution(estimator.number_of_solutions,
                                      neural_shape)
cv = SplitTrainTest(X.shape[0])
fit_param = {'neural_shape': neural_shape, "archive": archive_solution}
# estimator.fit(X,y,**fit_param)
gs = GridSearchCV(estimator,
                  param_grid=param_dicts,
                  cv=cv,
                  n_jobs=-1,
                  fit_params=fit_param,
                  scoring='mean_squared_error')
gs.fit(X, y)
print gs.best_estimator_
print gs.best_estimator_.score(X, y)
Example #5
0
y_test = np.zeros(testing_set_size - 1)
for i in range(0, testing_set_size - 1):
    y_test[i] = data.cpu_rate[i + training_set_size + 1]

# Number of hiddens node (one hidden layer)
n_hidden = np.array([55])
# Define neural shape
# Input layer: [n_sample*n_size]
# Hidden layer:
# Output layer: regression
# neural_shape = [fuzzy_set_size,n_hidden,fuzzy_set_size]
# neural_shape = [fuzzy_set_size,n_hidden,fuzzy_set_size]

# Initialize ACO Estimator 130
estimator = ACOEstimator(Q=0.65,
                         epsilon=0.2,
                         number_of_solutions=10,
                         hidden_nodes=n_hidden)

# fit_param = {'neural_shape':neural_shape}

# fuzzy before training
# fuzzy step:
X_train_f = fuzzy(X_train)
y_train_f = fuzzy(y_train)
X_test_f = fuzzy(X_test)

# # # Initialize neural network model for regression
neuralNet = NeuralFlowRegressor(learning_rate=1E-04, hidden_nodes=n_hidden)
# # There are many techniques for combining GA with NN. One of this, the optimizer solution of GA will be weights initialized of NN
optimizer = OptimizerNNEstimator(estimator, neuralNet)
# # optimizer = neuralNet
y_test = np.zeros(testing_set_size - 1)
for i in range(0, testing_set_size - 1):
    y_test[i] = data.cpu_usage[i + training_set_size + 1]

# Number of hiddens node (one hidden layer)
n_hidden = 52

# Define neural shape
# Input layer: [n_sample*n_size]
# Hidden layer:
# Output layer: regression
# neural_shape = [fuzzy_set_size,n_hidden,fuzzy_set_size]
neural_shape = [fuzzy_set_size * 2, n_hidden, fuzzy_set_size]

# Initialize ACO Estimator
estimator = ACOEstimator(Q=0.65, epsilon=0.2, number_of_solutions=130)

fit_param = {'neural_shape': neural_shape}

# fuzzy before training
# fuzzy step:
X_train_f = fuzzy(X_train)
y_train_f = fuzzy(y_train)
X_test_f = fuzzy(X_test)

sliding_number = 2
X_train = list(SlidingWindow(X_train_f, sliding_number))
# # Initialize neural network model for regression
neuralNet = NeuralFlowRegressor()
X_test_f = list(SlidingWindow(X_test_f, sliding_number))
# There are many techniques for combining GA with NN. One of this, the optimizer solution of GA will be weights initialized of NN
if __name__ == '__main__':
    best_estimator = None
    best_score = np.Inf
    for loop in np.arange(1,20):
        n_input = 4
        n_periodic = 1
        n_hidden = 15
        neural_shape = [n_input+n_periodic,n_hidden,1]
        Q = 0.09
        epsilon = 0.55

        dataFeeder = TrafficFeeder()
        X_train,y_train = dataFeeder.fetch_traffic_training(n_input,1,(40,46))
        X_test,y_test = dataFeeder.fetch_traffic_test(n_input,1,(46,48))
        # retrieve = [n_input+1,(X_train,y_train,X_test,y_test)]
        acoNet = ACOEstimator(Q=Q,epsilon=epsilon)
        fit_param = {
            "neural_shape":neural_shape
        }
        acoNet.fit(X_train,y_train,**fit_param)
        fit_param["weights_matrix"] = acoNet.best_archive
        neuralNet = NeuralFlowRegressor()
        neuralNet.fit(X_train,y_train,**fit_param)
        y_pred = dataFeeder.convert(neuralNet.predict(X_test))
        score =  np.sqrt(mean_squared_error(y_pred,y_test))
        if(score<best_score):
            best_estimator = acoNet
            print score
        # plot_fig(y_pred,y_test)
    print best_score,best_estimator