from manager.dbmanager import DBManager from etl.etl import ETL manager = DBManager() etl = ETL(manager=manager) etl.get_Kospi_data_ex1("local_files/kospi.xlsx")
##### LOADING DATA FROM VARIOUS SOURCES # Download local files for superviesd learning load_data_instr = {"category_name": 'Iris Fisher'} etl.load_supervised_data(path='local_files/iris.csv', ctg_name=load_data_instr["category_name"]) # Define categories for JapanExchange_Derivatives_ex2 cats = [Category(name='futures', description='azaza'), Category(name='call', description='azaza'), Category(name='put', description='azaza'), Category(name='cbr', description='azaza')] DB.session.add_all(cats) # Import Future Data c, r, rh = etl.get_Kospi_data_ex1('../Kospi Quotes Eikon Loader.xlsx') # Download file 'rb_e20161027.txt.csv' etl.get_JapanExchange_Derivatives_ex2('../rb_e20161027.txt.csv') # Import data from pdf path = "../Examples/Acts 2016/" etl.get_PDF_case_1(path) # Receiving daily data from the CBR (exchange rates, discount prices of precious metals ...) etl.get_CBR_ex3(datetime.datetime(2016, 10, 10), datetime.datetime.now()) # Define categories for Quandl data Category = pd.DataFrame([{'name': 'Financial Markets', 'description': 'Financial Markets Data Branch'}, {'name': 'Europe', 'description': 'Europe', 'parent_name': 'Financial Markets'}, {'name': 'Russia', 'description': 'Russia', 'parent_name': 'Europe'},