Example #1
0
 def plot_activity(self):
     euler = EulerEstimator(
         derivatives=[self.dv_dt, self.dn_dt, self.dm_dt, self.dh_dt],
         point=(0, (self.v_0, self.n_0, self.m_0, self.h_0)))
     plt.plot([n / 2 for n in range(160)],
              [self.s_t(n / 2) for n in range(160)])
     euler.plot([0, 80], step_size=0.02, file_name="photo.png")
Example #2
0
    def plot_activity(self):
        estimator = EulerEstimator(
            derivatives=[self.dV, self.dn_dt, self.dm_dt, self.dh_dt],
            point=(0, (0, self.n_0, self.m_0, self.h_0)))
        plt.plot([n / 2 for n in range(160)],
                 [self.s_t(n / 2) for n in range(160)])

        estimator.plot([0, 80], step_size=0.02, filename="hodgen_huxley.png")
 def __init__(self, stimulus):
     self.stimulus = stimulus
     self.estimator = EulerEstimator(self.get_derivatives(),
                                     self.get_starting_point())
import sys

sys.path.append('src/python')
from euler_estimator import EulerEstimator

euler = EulerEstimator([(lambda t, x: -0.0003 * x[0] * x[1]),
                        (lambda t, x: -0.02 * x[1] + 0.0003 * x[0] * x[1]),
                        (lambda t, x: 0.02 * x[1])], (0, [1000, 1, 0]))
euler.plot([0, 350], stepsize=0.001, filename='assignment_50-2.png')
Example #5
0
# # point, derivative, deltas
# # (0.6, 3.15), 1.6, (0.5, 0.8)
# # (1.1, 3.95), 2.1, (0.5, 1.05)
# # (1.6, 5), 2.6, (0.5, 1.3)
# # (2.1, 6.3), 3.1, (0.5, 1.55)
# # (2.6, 7.85), 3.6, (0.4, 1.44)

# print(euler.point)
# # (3, 9.29)

euler = EulerEstimator(derivatives={
    "suseptible": (lambda t, x: -0.001 * x["suseptible"] * x["infected"]),
    "infected": (lambda t, x: 0.001 * x["suseptible"] * x["infected"] - 0.05 *
                 x["infected"]),
    "recovered": (lambda t, x: 0.05 * x["infected"])
},
                       point=(0, {
                           "suseptible": 500,
                           "infected": 5,
                           "recovered": 0
                       }))
print("Derivitive: " + str(euler.calc_derivative_at_point()))

# print("Point: "+str(euler.point))
# #(0, (0, 0, 0))
# print("Derivitive: "+str(euler.calc_derivative_at_point()))
# #[1, 0, 0]

# euler.step_forward(0.1)
# print("Point: "+str(euler.point))
        return 50
    elif t > 20 and t < 21:
        return 50
    elif t > 30 and t < 40:
        return 50
    elif t > 50 and t < 51:
        return 50
    elif t > 53 and t < 54:
        return 50
    elif t > 56 and t < 57:
        return 50
    elif t > 59 and t < 60:
        return 50
    elif t > 62 and t < 63:
        return 50
    elif t > 65 and t < 66:
        return 50
    return 0


neuron_0 = BiologicalNeuron(stimulus=electrode_voltage)
neuron_1 = BiologicalNeuron()
neuron_2 = BiologicalNeuron()
neurons = [neuron_0, neuron_1, neuron_2]
synapses = [(0, 1), (1, 2)]
network = BiologicalNeuralNetwork(neurons, synapses)
euler = EulerEstimator(derivatives=network.get_derivatives(),
                       point=network.get_starting_point())
plt.plot([n / 2 for n in range(160)],
         [electrode_voltage(n / 2) for n in range(160)])
euler.plot([0, 80], step_size=0.001, filename="biological_neural_network")
Example #7
0
from euler_estimator import EulerEstimator
derivatives = [
    (lambda t, x: -0.0003 * x[0] * x[1]),
    (lambda t, x: 0.0003 * x[0] * x[1] - 0.02 * x[1] - 0.001 * x[1]),
    (lambda t, x: 0.02 * x[1]), (lambda t, x: 0.001 * x[1])
]
starting_point = (0, (1000, 1, 0, 0))

estimator = EulerEstimator(derivatives, starting_point)

estimator.plot([0, 365], step_size=0.001, filename="quiz_4.png")
from euler_estimator import EulerEstimator

derivatives = [(lambda t, x: 0.6 * x[0] - 0.05 * x[0] * x[1]),
               (lambda t, x: -0.9 * x[1] + 0.02 * x[0] * x[1])]
starting_point = (0, (100, 10))

estimator = EulerEstimator(derivatives, starting_point)

estimator.plot([0, 100],
               step_size=0.001,
               filename="epic_assignment_48_plot.png")
  int_5 = t >= 53 and t <= 54
  int_6 = t >= 56 and t <= 57
  int_7 = t >= 59 and t <= 60
  int_8 = t >= 62 and t <= 63
  int_9 = t >= 65 and t <= 66

  if int_1 or int_2 or int_3 or int_4 or int_5 or int_6 or int_7 or int_8 or int_9:
    return 150
  return 0

################################
### input into EulerEstimator

V_0 = 0
n_0 = alpha_n(0, {'V':V_0})/(alpha_n(0, {'V':V_0})+beta_n(0, {'V':V_0}))
m_0 = alpha_m(0, {'V':V_0})/(alpha_m(0, {'V':V_0})+beta_m(0, {'V':V_0}))
h_0 = alpha_h(0, {'V':V_0})/(alpha_h(0, {'V':V_0})+beta_h(0, {'V':V_0}))

derivatives = {
  'V': dV_dt,
  'n': dn_dt,
  'm': dm_dt,
  'h': dh_dt,
}

euler = EulerEstimator(derivatives)

initial_values = {'V':V_0, 'n':n_0, 'm':m_0, 'h':h_0}
initial_point = (0, initial_values)

euler.plot(point=initial_point, step_size=0.01, num_steps=8000, additional_functions={'stimulus':s})
from euler_estimator import EulerEstimator
import sys
sys.path.append('src/python')

euler = EulerEstimator([(lambda x, y: x + 1)], (1, [4]))
euler.plot([-5, 5])
Example #11
0
from euler_estimator import EulerEstimator

euler = EulerEstimator(derivatives=[
    (lambda t, x: -0.0003 * x[1] * x[0] + 0.01 * x[1] + 0.001),
    (lambda t, x: -0.02 * x[1] + 0.0003 * x[1] * x[0]),
    (lambda t, x: 0.01 * x[1])
],
                       point=(0, (1000, 1, 0)))
euler.plot([0, 150], step_size=0.001, filename='plot.png')
#     (3, 9.5) # after 4th step
# ], euler.calc_estimated_points(point=(1,4), step_size=0.5, num_steps=4)
# print('passed')

# euler = EulerEstimator(derivative = lambda t: t+1)

# euler.plot(point=(-5,10), step_size=0.1, num_steps=100)

print('_____Assignment 40_____ ')

derivatives = {
    'A': (lambda t, x: x['A'] + 1),
    'B': (lambda t, x: x['A'] + x['B']),
    'C': (lambda t, x: 2 * x['B'])
}
euler = EulerEstimator(derivative=derivatives)

initial_values = {'A': 0, 'B': 0, 'C': 0}
initial_point = (0, initial_values)

print('testing calc_derivative_at_point...')
assert euler.calc_derivative_at_point(initial_point) == {
    'A': 1,
    'B': 0,
    'C': 0
}
print('passed')

print('testing step forward...')
point_2 = euler.step_forward(point=initial_point, step_size=0.1)
assert point_2 == (0.1, {'A': 0.1, 'B': 0, 'C': 0})
Example #13
0
from euler_estimator import EulerEstimator
import sys
sys.path.append('src/python')

print('\nTesting... \n')

euler = EulerEstimator({'a': (lambda x, y: x + 1)}, (1, {'b': 4}))

print("    Testing EulerEstimator's calc_derivative()")
assert euler.calc_derivative() == [
    2
], "EulerEstimator's calc_derivative() was not right, it should be [2], but was {}".format(
    euler.calc_derivative())
print("    EulerEstimator's calc_derivative() Passed!!!\n")

print("    Testing EulerEstimator's step_forward()")
euler.step(0.1)
assert tuple(euler.point) == (
    1.1, [4.2]
), "EulerEstimator's step_forward() was not right, it should be (1.1, [4.2]), but was {}".format(
    tuple(euler.point))
print("    EulerEstimator's step_forward() Passed!!!\n")

print("    Testing EulerEstimator's calc_derivative()")
assert euler.calc_derivative() == [
    2.1
], "EulerEstimator's calc_derivative() was not right, it should be [2.1], but was {}".format(
    euler.calc_derivative())
print("    EulerEstimator's calc_derivative() Passed!!!\n")

print("    Testing EulerEstimator's step_forward()")
Example #14
0
import sys
sys.path.append('src')
from euler_estimator import EulerEstimator

euler = EulerEstimator(derivative=(lambda x: x + 1), point=(1, 4))

assert euler.point == (1, 4), 'Wrong Point'
assert euler.calc_derivative_at_point() == 2, 'Wrong Derivative'

euler.step_forward(0.1)
assert euler.point == (1.1, 4.2), 'Wrong Point'

assert euler.calc_derivative_at_point() == 2.1, 'Wrong Derivative'
euler.step_forward(-0.5)
assert euler.point == (0.6, 3.15), 'wrong point'
euler.go_to_input(3, 0.5)

assert euler.point == (3, 9.29), 'Weong Point'

print('ALL TESTS PASSED')
 def plot_activity(self):
     euler = EulerEstimator(self.derivatives, self.initial_positions)
     plt.plot([n / 2 for n in range(160)],
              [self.stimulus(n / 2) for n in range(160)])
     euler.plot([0, 80], stepsize=0.02)
Example #16
0
#print("Testing estimated points")
#assert euler.calc_estimated_points(point=(1,4), #step_size=0.5, num_steps=4) == [(1, 4), (1.5, 5),(2, 6.25), (2.5, 7.75), (3, 9.5)]
#print("Passed")

#euler.plot(point=(-5,10), step_size=0.1, num_steps=100)

derivatives = {
    'A': (lambda t, x: x['A'] + 1),
    'B': (lambda t, x: x['A'] + x['B']),
    'C': (lambda t, x: 2 * x['B'])
}

initial_values = {'A': 0, 'B': 0, 'C': 0}
initial_point = (0, initial_values)
euler = EulerEstimator(derivatives=derivatives)

assert euler.calc_derivative_at_point(initial_point) == {
    'A': 1,
    'B': 0,
    'C': 0
}

point_2 = euler.step_forward(initial_point, 0.1)
assert point_2 == (0.1, {'A': 0.1, 'B': 0, 'C': 0}), point_2

assert euler.calc_derivative_at_point(point_2) == {
    'A': 1.1,
    'B': 0.1,
    'C': 0
}, euler.calc_derivative_at_point(point_2)
import sys
sys.path.append('src')
from euler_estimator import EulerEstimator

euler = EulerEstimator(derivatives = {'a':(lambda x: x['a']/2)}, point = (1,{'a':4}))

print("\n Testing starting point")
assert euler.point == (1,{'a':4}), 'Incorrect Starting point'
print("     passed")
 
print("\n Testing starting derivative")
assert euler.calc_derivative_at_point() == {'a':2}, "Expected: "+str({'a':2})+", Got: "+str(euler.calc_derivative_at_point())
print("     passed")
 
print("\n Testing point after first step")
euler.step_forward(0.1)
assert euler.point == (1.1, {'a':4.2}), 'Incorrect point after first step'
print("     passed")
 
print("\n Testing derivative after first step")
assert euler.calc_derivative_at_point() == {'a':2.1},'Incorrect derivative after first step'
print("     passed")
 
print("\n Testing point after 2nd step")
euler.step_forward(-0.5)
assert (round(euler.point[0],3),{item:round(euler.point[1][item],3) for item in euler.point[1]})== (0.6, {'a':3.15}), 'Incorrect point after 2nd step'
print("     passed")
 
print("\n Testing go_to_input")
euler.go_to_input(3, step_size = 0.5)
assert (round(euler.point[0],3),{item:round(euler.point[1][item],3) for item in euler.point[1]}) == (3, {'a':9.229}), 'Incorrect final result'
Example #18
0
assert euler.calc_estimated_points(point=(1,4), step_size=0.5, num_steps=4) == [
    (1, 4), # starting point
    (1.5, 5), # after 1st step
    (2, 6.25), # after 2nd step
    (2.5, 7.75), # after 3rd step
    (3, 9.5) # after 4th step
]'''

derivatives = {
    'A': (lambda t, x: x['A'] + 1),
    'B': (lambda t, x: x['A'] + x['B']),
    'C': (lambda t, x: 2 * x['B'])
}

euler = EulerEstimator(derivatives=derivatives)

initial_values = {'A': 0, 'B': 0, 'C': 0}
initial_point = (0, initial_values)

assert euler.calc_derivative_at_point(initial_point) == {
    'A': 1,
    'B': 0,
    'C': 0
}

point_2 = euler.step_forward(point=initial_point, step_size=0.1)
assert point_2 == (0.1, {'A': 0.1, 'B': 0, 'C': 0})

assert euler.calc_derivative_at_point(point_2) == {'A': 1.1, 'B': 0.1, 'C': 0}
Example #19
0
import sys
sys.path.append('src')
from euler_estimator import EulerEstimator


derivatives = {'deer': (lambda t,x: 0.6*x['deer']-0.05*x['wolves']*x['deer']),'wolves': (lambda t,x: -0.9*x['wolves']+0.02*x['wolves']*x['deer'])}
euler = EulerEstimator(derivative = derivatives)

initial_values = {'deer': 100, 'wolves': 10}
initial_point = (0, initial_values)

euler.plot(point=initial_point, step_size=0.001, num_steps=100000)
Example #20
0
import sys
sys.path.append('src/python')
from euler_estimator import EulerEstimator


euler = EulerEstimator([(lambda t, x: 0.6 * x[0] - 0.05 * x[0] * x[1]),
                        (lambda t, x: -0.9 * x[1] + 0.02 * x[0] * x[1])], (0, [100, 10]))
euler.plot([0, 100], stepsize=0.001, filename='assignment_48-1.png')

def dm_dt(t, x):
    V = x['V']
    m = x['m']
    return alpha_m(V) * (1 - m) - beta_m(V) * m


def dh_dt(t, x):
    V = x['V']
    h = x['h']
    return alpha_h(V) * (1 - h) - beta_h(V) * h


derivatives = {'V': dV_dt, 'n': dn_dt, 'm': dm_dt, 'h': dh_dt}
euler = EulerEstimator(derivative=derivatives)

initial_values = {
    'V': 0,
    'n': (alpha_n(0)) / (alpha_n(0) + beta_n(0)),
    'm': (alpha_m(0)) / (alpha_m(0) + beta_m(0)),
    'h': (alpha_h(0)) / (alpha_h(0) + beta_h(0)),
}

initial_point = (0, initial_values)


def hodgkin_plot(euler, point, step_size, num_steps):
    plt.style.use('bmh')
    points = euler.calc_estimated_points(point, step_size, num_steps)
    legend = []
Example #22
0
import sys

sys.path.append('src')
from euler_estimator import EulerEstimator

derivatives = {
    'D': (lambda t, x: 0.6 * x['D'] - 0.05 * x['D'] * x['W']),
    'W': (lambda t, x: -0.9 * x['W'] + 0.02 * x['D'] * x['W']),
}

euler = EulerEstimator(derivatives=derivatives)

initial_values = {'D': 100, 'W': 10}
initial_point = (0, initial_values)
euler.plot(initial_point, 0.001, 100000)
Example #23
0
    def plot_activity(self):     
        plt.plot([x/2 for x in range(160)], [self.s_t(n/2) for n in range(160)])

        estimator = EulerEstimator(derivatives = {"dV":(self.dV), "dn_dt":(self.dn_dt), "dm_dt":(self.dm_dt), "dh_dt":(self.dh_dt)},
        point = (0, (0, self.n_zero, self.m_zero, self.h_zero)))
        estimator.plot([0, 80], step_size=0.02,filename="plot.png")
class Neuron:
    def __init__(self, stimulus):
        self.stimulus = stimulus
        self.estimator = EulerEstimator(self.get_derivatives(),
                                        self.get_starting_point())

    def plot_activity(self, filename):
        plt.plot([n / 2 for n in range(160)], [s_t(n / 2) for n in range(160)],
                 zorder=1)
        self.estimator.plot([0, 80], step_size=0.02, filename=filename)

    def get_starting_point(self):
        x = 0.07 * (math.e**3 + 1)
        h_0 = x / (x + 1)
        n_0 = 1 / (1.25 * (math.e - 1) + 1)
        m_0 = 2.5 / (2.5 + 4 * (math.e**2.5 - 1))
        V_0 = 0
        return 0, (V_0, n_0, m_0, h_0)

    def get_derivatives(self):
        return [self.dV(), Neuron.dn, Neuron.dm, Neuron.dh]

    @staticmethod
    def a_n(t, x):
        return 0.01 * (10 - x[0]) / (math.exp(0.1 * (10 - x[0])) - 1)

    @staticmethod
    def b_n(t, x):
        return 0.125 * math.exp(-x[0] / 80)

    @staticmethod
    def a_m(t, x):
        return 0.1 * (25 - x[0]) / (math.exp(0.1 * (25 - x[0])) - 1)

    @staticmethod
    def b_m(t, x):
        return 4 * math.exp(-x[0] / 18)

    @staticmethod
    def a_h(t, x):
        return 0.07 * math.exp(-x[0] / 20)

    @staticmethod
    def b_h(t, x):
        return 1 / (math.exp(0.1 * (30 - x[0])) + 1)

    @staticmethod
    def dn(t, x):
        return Neuron.a_n(t, x) * (1 - x[1]) - Neuron.b_n(t, x) * x[1]

    @staticmethod
    def dm(t, x):
        return Neuron.a_m(t, x) * (1 - x[2]) - Neuron.b_m(t, x) * x[2]

    @staticmethod
    def dh(t, x):
        return Neuron.a_h(t, x) * (1 - x[3]) - Neuron.b_h(t, x) * x[3]

    C = 1
    Vna = 115
    Vk = -12
    VL = 10.6
    _gna = 120
    _gk = 36
    _gl = 0.3

    @staticmethod
    def INa(t, x):
        return Neuron.gna(t, x) * (x[0] - Neuron.Vna)

    @staticmethod
    def gna(t, x):
        return Neuron._gna * x[2]**3 * x[3]

    @staticmethod
    def Ik(t, x):
        return Neuron.gk(t, x) * (x[0] - Neuron.Vk)

    @staticmethod
    def gk(t, x):
        return Neuron._gk * x[1]**4

    @staticmethod
    def IL(t, x):
        return Neuron.gl(t, x) * (x[0] - Neuron.VL)

    @staticmethod
    def gl(t, x):
        return Neuron._gl

    def dV(self):
        return lambda t, x: 1 / Neuron.C * (self.stimulus(t) - Neuron.INa(
            t, x) - Neuron.Ik(t, x) - Neuron.IL(t, x))
Example #25
0
sys.path.append("src")
try:
    from otest import do_assert, cstring
    from euler_estimator import EulerEstimator
except ImportError as e:
    print(e)


def _round(t):
    return tuple(round(x, 5) for x in t)


euler = EulerEstimator(
    derivatives={
        '1': (lambda t, x: x['1'] + 1),
        '2': (lambda t, x: x['1'] + x['2']),
        '3': (lambda t, x: 2*x['2'])
    },
    point=(0, {'1': 0, '2': 0, '3': 0})
)

do_assert("point", euler.point,
          (0, {'1': 0, '2': 0, '3': 0}))
do_assert("calc derivative", euler.calc_derivative_at_point(),
          {'1': 1, '2': 0, '3': 0})

euler.step_forward(0.1)
do_assert("step forward", euler.point,
          (0.1, {'1': 0.1, '2': 0, '3': 0}))

do_assert("new derivative", euler.calc_derivative_at_point(),
          {'1': 1.1, '2': 0.1, '3': 0})
import sys
sys.path.append('src')
from euler_estimator import EulerEstimator

print("Now graph")
euler_graph = EulerEstimator(derivative=(lambda x: x + 1), point=(1, 4))
euler_graph.plot([-5, 5], step_size=0.1, filename='plot.png')