- Filtering: - - Used Columns: - """ from eval.evaluation import run_experiment from grm import preprocessing from pm4py.algo.filtering.log.attributes import attributes_filter log_file = "bpi2017.csv" name_of_case_id = "Case ID" name_of_activity = "Activity" name_of_timestamp = "Complete Timestamp" name_of_label = "Accepted" hyper_params = {'num_epochs': 1000} k = 10 log = preprocessing.import_data("../data", log_file, separator=";", quote='', case_id=name_of_case_id, activity=name_of_activity, time_stamp=name_of_timestamp, target=name_of_label) activities = attributes_filter.get_attribute_values(log, "concept:name") # filter out activities representing work items w_activities = [i for i in activities.keys() if i.startswith('W_')] log_filtered = attributes_filter.apply_events(log, w_activities, parameters={ attributes_filter.PARAMETER_CONSTANT_ATTRIBUTE_KEY: "concept:name", "positive": True}) run_experiment(log, hyper_params=hyper_params, k=k, ml_flow_run_name_prefix=log_file)
""" Evaluation No. 5 """ from eval.evaluation import run_experiment from grm import preprocessing logfile = "clickstream_anon.csv" name_of_case_id = "CASE_KEY" name_of_activity = "ACTIVITY" name_of_timestamp = "EVENTTIMESTAMP" name_of_label = "EXCEPTION" hyper_params = {'num_epochs': 5, 'batch_size': 1024, 'hidden_size': 2000} k = 10 log = preprocessing.import_data("../data", logfile, separator=",", quote='"', case_id=name_of_case_id, activity=name_of_activity, time_stamp=name_of_timestamp, target=name_of_label) run_experiment(log, hyper_params=hyper_params, k=k, ml_flow_run_name_prefix=logfile, save_artifact=False)