class BasePerceptronRanker(Ranker): def __init__(self, cfg): if not cfg: cfg = {} self.passes = cfg.get('passes', 5) self.alpha = cfg.get('alpha', 1) self.language = cfg.get('language', 'en') self.selector = cfg.get('selector', '') # initialize diagnostics self.lists_analyzer = None self.evaluator = None self.prune_feats = cfg.get('prune_feats', 1) self.rival_number = cfg.get('rival_number', 10) self.averaging = cfg.get('averaging', False) self.randomize = cfg.get('randomize', False) self.future_promise_weight = cfg.get('future_promise_weight', 1.0) self.future_promise_type = cfg.get('future_promise_type', 'expected_children') self.rival_gen_strategy = cfg.get('rival_gen_strategy', ['other_inst']) self.rival_gen_max_iter = cfg.get('rival_gen_max_iter', 50) self.rival_gen_max_defic_iter = cfg.get('rival_gen_max_defic_iter', 3) self.rival_gen_beam_size = cfg.get('rival_gen_beam_size') self.rival_gen_prune_size = cfg.get('rival_gen_prune_size') self.candgen_model = cfg.get('candgen_model') self.diffing_trees = cfg.get('diffing_trees', False) def score(self, cand_tree, da): """Score the given tree in the context of the given dialogue act. @param cand_tree: the candidate tree to be scored, as a TreeData object @param da: a DA object representing the input dialogue act """ return self._score(self._extract_feats(cand_tree, da)) def score_all(self, cand_trees, da): """Array version of the score() function""" return [self.score(cand_tree, da) for cand_tree in cand_trees] def _extract_feats(self, tree, da): raise NotImplementedError def train(self, das_file, ttree_file, data_portion=1.0): """Run training on the given training data.""" self._init_training(das_file, ttree_file, data_portion) for iter_no in xrange(1, self.passes + 1): self.train_order = range(len(self.train_trees)) if self.randomize: rnd.shuffle(self.train_order) log_info("Train order: " + str(self.train_order)) self._training_pass(iter_no) if self.evaluator.tree_accuracy() == 1: # if tree accuracy is 1, we won't learn anything anymore break # averaged perceptron – average the weights obtained after each pass if self.averaging is True: self.set_weights_iter_average() def _init_training(self, das_file, ttree_file, data_portion): """Initialize training (read input data, fix size, initialize candidate generator and planner)""" # read input log_info('Reading DAs from ' + das_file + '...') das = read_das(das_file) log_info('Reading t-trees from ' + ttree_file + '...') ttree_doc = read_ttrees(ttree_file) sents = sentences_from_doc(ttree_doc, self.language, self.selector) trees = trees_from_doc(ttree_doc, self.language, self.selector) # make training data smaller if necessary train_size = int(round(data_portion * len(trees))) self.train_trees = trees[:train_size] self.train_das = das[:train_size] self.train_sents = sents[:train_size] self.train_order = range(len(self.train_trees)) log_info('Using %d training instances.' % train_size) # initialize candidate generator if self.candgen_model is not None: self.candgen = RandomCandidateGenerator.load_from_file(self.candgen_model) # self.sampling_planner = SamplingPlanner({'language': self.language, # 'selector': self.selector, # 'candgen': self.candgen}) # check if A*search planner is needed (i.e., any rival generation strategy requires it) # and initialize it if isinstance(self.rival_gen_strategy[0], tuple): asearch_needed = any([s in ['gen_cur_weights', 'gen_update'] for _, ss in self.rival_gen_strategy for s in ss]) else: asearch_needed = any([s in ['gen_cur_weights', 'gen_update'] for s in self.rival_gen_strategy]) if asearch_needed: assert self.candgen is not None self.asearch_planner = ASearchPlanner({'candgen': self.candgen, 'language': self.language, 'selector': self.selector, 'ranker': self, }) def _training_pass(self, pass_no): """Run one training pass, update weights (store them for possible averaging), and store diagnostic values.""" pass_start_time = time.time() self.reset_diagnostics() self.update_weights_sum() log_debug('\n***\nTR %05d:' % pass_no) rgen_max_iter = self._get_num_iters(pass_no, self.rival_gen_max_iter) rgen_max_defic_iter = self._get_num_iters(pass_no, self.rival_gen_max_defic_iter) rgen_beam_size = self.rival_gen_beam_size rgen_prune_size = self.rival_gen_prune_size rgen_strategy = self._get_rival_gen_strategy(pass_no) for tree_no in self.train_order: log_debug('TREE-NO: %d' % tree_no) log_debug('SENT: %s' % self.train_sents[tree_no]) gold = Inst(da=self.train_das[tree_no], tree=self.train_trees[tree_no], score=self._score(self.train_feats[tree_no]), feats=self.train_feats[tree_no]) # obtain some 'rival', alternative incorrect candidates for strategy in rgen_strategy: # generate using current weights if strategy == 'gen_cur_weights': gen = self._gen_cur_weights(gold, rgen_max_iter, rgen_max_defic_iter, rgen_prune_size, rgen_beam_size) # generate while trying to update weights elif strategy == 'gen_update': gen = self._gen_update(gold, rgen_max_iter, rgen_max_defic_iter, rgen_prune_size, rgen_beam_size) # check against other possible candidates/combinations else: gen = self._get_rival_candidates(gold, tree_no, strategy) # evaluate the top-scoring generated tree against gold t-tree # (disregarding whether it was selected as the best one) self.evaluator.append(TreeNode(gold.tree), TreeNode(gen.tree), gold.score, gen.score) # update weights if the system doesn't give the highest score to the gold standard tree if gold.score < gen.score: self._update_weights(gold, gen) # store a copy of the current weights for averaging self.store_iter_weights() # debug print: current weights and pass accuracy log_debug(self._feat_val_str(), '\n***') log_debug('PASS ACCURACY: %.3f' % self.evaluator.tree_accuracy()) # print and return statistics self._print_pass_stats(pass_no, datetime.timedelta(seconds=(time.time() - pass_start_time))) def diffing_trees_with_scores(self, da, good_tree, bad_tree): """For debugging purposes. Return a printout of diffing trees between the chosen candidate and the gold tree, along with scores.""" good_sts, bad_sts = good_tree.diffing_trees(bad_tree, symmetric=False) comm_st = good_tree.get_common_subtree(bad_tree) ret = 'Common subtree: %.3f' % self.score(comm_st, da) + "\t" + unicode(comm_st) + "\n" ret += "Good subtrees:\n" for good_st in good_sts: ret += "%.3f" % self.score(good_st, da) + "\t" + unicode(good_st) + "\n" ret += "Bad subtrees:\n" for bad_st in bad_sts: ret += "%.3f" % self.score(bad_st, da) + "\t" + unicode(bad_st) + "\n" return ret def _get_num_iters(self, cur_pass_no, iter_setting): """Return the maximum number of iterations (total/deficit) given the current pass. Used to keep track of variable iteration number setting in configuration. @param cur_pass_no: the number of the current pass @param iter_setting: number of iteration setting (self.max_iter or self.max_defic_iter) """ if isinstance(iter_setting, (list, tuple)): ret = 0 for set_pass_no, set_iter_no in iter_setting: if set_pass_no > cur_pass_no: break ret = set_iter_no return ret else: return iter_setting # a single setting for all passes def _get_rival_gen_strategy(self, cur_pass_no): """Return the rival generation strategy/strategies for the current pass. Used to keep track of variable rival generation setting setting in configuration. @param cur_pass_no: the number of the current pass """ if isinstance(self.rival_gen_strategy[0], tuple): ret = [] for set_pass_no, strategies in self.rival_gen_strategy: if set_pass_no > cur_pass_no: break ret = strategies return ret else: return self.rival_gen_strategy # a single setting for all passes def _print_pass_stats(self, pass_no, pass_duration): """Print pass statistics from internal evaluator fields and given pass duration.""" log_info('Pass %05d -- tree-level accuracy: %.4f' % (pass_no, self.evaluator.tree_accuracy())) log_info(' * Generated trees NODE scores: P: %.4f, R: %.4f, F: %.4f' % self.evaluator.p_r_f1()) log_info(' * Generated trees DEP scores: P: %.4f, R: %.4f, F: %.4f' % self.evaluator.p_r_f1(EvalTypes.DEP)) log_info(' * Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %.4f' % self.lists_analyzer.stats()) log_info(' * Tree size stats:\n -- GOLD: %s\n -- PRED: %s\n -- DIFF: %s' % self.evaluator.size_stats()) log_info(' * Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s' % self.evaluator.common_substruct_stats()) log_info(' * Score stats\n -- GOLD: %s\n -- PRED: %s\n -- DIFF: %s' % self.evaluator.score_stats()) log_info(' * Duration: %s' % str(pass_duration)) def _feat_val_str(self, sep='\n', nonzero=False): """Return feature names and values for printing. To be overridden in base classes.""" return '' def _get_rival_candidates(self, gold, tree_no, strategy): """Generate some rival candidates for a DA and the correct (gold) tree, given a strategy; using other DAs for the correct tree, other trees for the correct DA, or random trees. NB: This has not been shown to be usable in practice; use _gen_cur_weights() instead. TODO: checking for trees identical to the gold one slows down the process @param tree_no: the index of the current training data item (tree, DA) @rtype: tuple of two lists: one of TreeData's, one of arrays @return: an array of rival trees and an array of the corresponding features """ train_trees = self.train_trees rival_das, rival_trees, rival_feats = [], [], [] if strategy != 'other_da': rival_das = [gold.da] * self.rival_number # use current DA but change trees when computing features if strategy == 'other_inst': # use alternative indexes, avoid the correct one rival_idxs = map(lambda idx: len(train_trees) - 1 if idx == tree_no else idx, rnd.sample(xrange(len(train_trees) - 1), self.rival_number)) other_inst_trees = [train_trees[rival_idx] for rival_idx in rival_idxs] rival_trees.extend(other_inst_trees) rival_feats.extend([self._extract_feats(tree, gold.da) for tree in other_inst_trees]) # use the current gold tree but change DAs when computing features if strategy == 'other_da': rival_idxs = map(lambda idx: len(train_trees) - 1 if idx == tree_no else idx, rnd.sample(xrange(len(train_trees) - 1), self.rival_number)) other_inst_das = [self.train_das[rival_idx] for rival_idx in rival_idxs] rival_das.extend(other_inst_das) rival_trees.extend([self.train_trees[tree_no]] * self.rival_number) rival_feats.extend([self._extract_feats(self.train_trees[tree_no], da) for da in other_inst_das]) # # candidates generated using the random planner (use the current DA) # if strategy == 'random': # random_trees = [] # while len(random_trees) < self.rival_number: # tree = self.sampling_planner.generate_tree(da) # if (tree != train_trees[tree_no]): # don't generate trees identical to the gold one # random_trees.append(tree) # rival_trees.extend(random_trees) # rival_feats.extend([self._extract_feats(tree, da) for tree in random_trees]) # score them along with the right one rival_scores = [self._score(r) for r in rival_feats] top_rival_idx = rival_scores.index(max(rival_scores)) gen = Inst(tree=rival_trees[top_rival_idx], da=rival_das[top_rival_idx], score=rival_scores[top_rival_idx], feats=rival_feats[top_rival_idx]) # debug print: candidate trees log_debug('#RIVALS: %02d' % len(rival_feats)) log_debug('SEL: GOLD' if gold.score >= gen.score else ('SEL: RIVAL#%d' % top_rival_idx)) log_debug('ALL CAND TREES:') for ttree, score in zip([gold.tree] + rival_trees, [gold.score] + rival_scores): log_debug("%12.5f" % score, "\t", ttree) return gen def _gen_cur_weights(self, gold, max_iter, max_defic_iter, prune_size, beam_size): """ Get the best candidate generated using the A*search planner, which uses this ranker with current weights to guide the search, and the current DA as the input. @param gold: the gold-standard Inst holding the input DA for generation and the reference tree @param max_iter: maximum number of A*-search iterations to run @param max_defic_iter: maximum number of deficit A*-search iterations (stopping criterion) @param prune_size: beam size for open list pruning @param beam_size: beam size for candidate expansion (expand more per iteration if > 1) @return: The best generated tree that is different from the gold-standard tree @rtype: Inst """ log_debug('GEN-CUR-WEIGHTS') # TODO make asearch_planner remember features (for last iteration, maybe) self.asearch_planner.run(gold.da, max_iter, max_defic_iter, prune_size, beam_size) return self.get_best_generated(gold) def get_best_generated(self, gold): """Return the best generated tree that is different from the gold-standard tree (to be used for updates, if it scores better). Also, keep track of logging and update analyzer lists. @param gold: the gold-standard Inst from which the generated tree must differ @rtype: Inst """ self.lists_analyzer.append(gold.tree, self.asearch_planner.open_list, self.asearch_planner.close_list) gen_tree = gold.tree while self.asearch_planner.close_list and gen_tree == gold.tree: gen_tree, gen_score = self.asearch_planner.close_list.pop() # scores are negative on the close list – reverse the sign gen = Inst(tree=gen_tree, da=gold.da, score=-gen_score, feats=self._extract_feats(gen_tree, gold.da)) log_debug('SEL: GOLD' if gold.score >= gen.score else 'SEL: GEN') log_debug("GOLD:\t", "%12.5f" % gold.score, "\t", gold.tree) log_debug("GEN :\t", "%12.5f" % gen.score, "\t", gen.tree) return gen def _gen_update(self, gold, max_iter, max_defic_iter, prune_size, beam_size): """Try generating using the current weights, but update the weights after each iteration if the result is not going in the right direction (not a subtree of the gold-standard tree). @param gold: the gold-standard Inst holding the input DA for generation and the reference tree @param max_iter: maximum number of A*-search iterations to run @param max_defic_iter: maximum number of deficit A*-search iterations (stopping criterion) @param prune_size: beam size for open list pruning @param beam_size: beam size for candidate expansion (expand more per iteration if > 1) @return: The best generated tree that is different from the gold-standard tree @rtype: Inst """ log_debug('GEN-UPDATE') self.asearch_planner.init_run(gold.da, max_iter, max_defic_iter, prune_size, beam_size) while not self.asearch_planner.check_finalize(): # run one A*search iteration self.asearch_planner.run_iter() # stop if there's nothing on the open list if not self.asearch_planner.open_list: break # look if we are on the right track to the gold tree cur_top, score = self.asearch_planner.open_list.peek() csi, _ = gold.tree.common_subtree_idxs(cur_top) # if not, update if len(csi) != len(cur_top): feats = self._extract_feats(cur_top, gold.da) gen = Inst(tree=cur_top, da=gold.da, feats=feats, score=score) # for small wrong trees, # fake the current open list to only include a subtree of the gold tree # TODO fake it better, include more variants # update using a subtree of the gold tree if len(cur_top) < len(gold.tree): diff = sorted(list(set(range(len(gold.tree))) - set(csi)), cmp=gold.tree._compare_node_depth) gold_sub = gold.tree.get_subtree(csi + diff[0:len(cur_top) - len(gold.tree)]) self.asearch_planner.open_list.clear() self.asearch_planner.open_list.push(gold_sub, score) # TODO speed up by remembering the features in planner feats = self._extract_feats(gold_sub, gold.da) gold_sub = Inst(tree=gold_sub, da=gold.da, feats=feats, score=0) self._update_weights(gold_sub, gen) # otherwise, update using the full gold tree else: self._update_weights(gold, gen) return self.get_best_generated(gold) def get_weights(self): """Return the current ranker weights (parameters). To be overridden by derived classes.""" raise NotImplementedError def set_weights(self, w): """Set new ranker weights. To be overridden by derived classes.""" raise NotImplementedError def set_weights_average(self, ws): """Set the weights as the average of the given array of weights (used in parallel training). To be overridden by derived classes.""" raise NotImplementedError def store_iter_weights(self): """Remember the current weights to be used for averaging. To be overridden by derived classes.""" raise NotImplementedError def set_weights_iter_average(self): """Set new weights as the average of all remembered weights. To be overridden by derived classes.""" raise NotImplementedError def get_weights_sum(self): """Return weights size in order to weigh future promise against them.""" raise NotImplementedError def update_weights_sum(self): """Update the current weights size for future promise weighining.""" raise NotImplementedError def reset_diagnostics(self): """Reset the evaluation statistics (Evaluator and ASearchListsAnalyzer objects).""" self.evaluator = Evaluator() self.lists_analyzer = ASearchListsAnalyzer() def get_diagnostics(self): """Return the current evaluation statistics (a tuple of Evaluator and ASearchListsAnalyzer objects.""" return self.evaluator, self.lists_analyzer def set_diagnostics_average(self, diags): """Given an array of evaluation statistics objects, average them an store in this ranker instance.""" self.reset_diagnostics() for evaluator, lists_analyzer in diags: self.evaluator.merge(evaluator) self.lists_analyzer.merge(lists_analyzer) def get_future_promise(self, cand_tree): """Compute expected future promise for a tree.""" w_sum = self.get_weights_sum() if self.future_promise_type == 'num_nodes': return w_sum * self.future_promise_weight * max(0, 10 - len(cand_tree)) elif self.future_promise_type == 'norm_exp_children': return (self.candgen.get_future_promise(cand_tree) / len(cand_tree)) * w_sum * self.future_promise_weight elif self.future_promise_type == 'ands': prom = 0 for idx, node in enumerate(cand_tree.nodes): if node.t_lemma == 'and': num_kids = cand_tree.children_num(idx) prom += max(0, 2 - num_kids) return prom * w_sum * self.future_promise_weight else: # expected children (default) return self.candgen.get_future_promise(cand_tree) * w_sum * self.future_promise_weight def get_future_promise_all(self, cand_trees): """Array version of get_future_promise.""" return [self.get_future_promise(cand_tree) for cand_tree in cand_trees]
class BasePerceptronRanker(Ranker): def __init__(self, cfg): if not cfg: cfg = {} self.passes = cfg.get('passes', 5) self.alpha = cfg.get('alpha', 1) self.language = cfg.get('language', 'en') self.selector = cfg.get('selector', '') # initialize diagnostics self.lists_analyzer = None self.evaluator = None self.prune_feats = cfg.get('prune_feats', 1) self.rival_number = cfg.get('rival_number', 10) self.averaging = cfg.get('averaging', False) self.randomize = cfg.get('randomize', False) self.future_promise_weight = cfg.get('future_promise_weight', 1.0) self.future_promise_type = cfg.get('future_promise_type', 'expected_children') self.rival_gen_strategy = cfg.get('rival_gen_strategy', ['other_inst']) self.rival_gen_max_iter = cfg.get('rival_gen_max_iter', 50) self.rival_gen_max_defic_iter = cfg.get('rival_gen_max_defic_iter', 3) self.rival_gen_beam_size = cfg.get('rival_gen_beam_size') self.candgen_model = cfg.get('candgen_model') self.diffing_trees = cfg.get('diffing_trees', False) def score(self, cand_tree, da): """Score the given tree in the context of the given dialogue act. @param cand_tree: the candidate tree to be scored, as a TreeData object @param da: a DialogueAct object representing the input dialogue act """ return self._score(self._extract_feats(cand_tree, da)) def score_all(self, cand_trees, da): """Array version of the score() function""" return [self.score(cand_tree, da) for cand_tree in cand_trees] def _extract_feats(self, tree, da): raise NotImplementedError def train(self, das_file, ttree_file, data_portion=1.0): """Run training on the given training data.""" self._init_training(das_file, ttree_file, data_portion) for iter_no in xrange(1, self.passes + 1): self.train_order = range(len(self.train_trees)) if self.randomize: rnd.shuffle(self.train_order) log_info("Train order: " + str(self.train_order)) self._training_pass(iter_no) if self.evaluator.tree_accuracy() == 1: # if tree accuracy is 1, we won't learn anything anymore break # averaged perceptron – average the weights obtained after each pass if self.averaging is True: self.set_weights_iter_average() def _init_training(self, das_file, ttree_file, data_portion): """Initialize training (read input data, fix size, initialize candidate generator and planner)""" # read input log_info('Reading DAs from ' + das_file + '...') das = read_das(das_file) log_info('Reading t-trees from ' + ttree_file + '...') ttree_doc = read_ttrees(ttree_file) sents = sentences_from_doc(ttree_doc, self.language, self.selector) trees = trees_from_doc(ttree_doc, self.language, self.selector) # make training data smaller if necessary train_size = int(round(data_portion * len(trees))) self.train_trees = trees[:train_size] self.train_das = das[:train_size] self.train_sents = sents[:train_size] self.train_order = range(len(self.train_trees)) log_info('Using %d training instances.' % train_size) # initialize candidate generator + planner if needed if self.candgen_model is not None: self.candgen = RandomCandidateGenerator.load_from_file(self.candgen_model) self.sampling_planner = SamplingPlanner({'language': self.language, 'selector': self.selector, 'candgen': self.candgen}) if 'gen_cur_weights' in self.rival_gen_strategy: assert self.candgen is not None self.asearch_planner = ASearchPlanner({'candgen': self.candgen, 'language': self.language, 'selector': self.selector, 'ranker': self, }) def _training_pass(self, pass_no): """Run one training pass, update weights (store them for possible averaging), and store diagnostic values.""" pass_start_time = time.time() self.reset_diagnostics() self.update_weights_sum() log_debug('\n***\nTR %05d:' % pass_no) rgen_max_iter = self._get_num_iters(pass_no, self.rival_gen_max_iter) rgen_max_defic_iter = self._get_num_iters(pass_no, self.rival_gen_max_defic_iter) rgen_beam_size = self.rival_gen_beam_size for tree_no in self.train_order: # obtain some 'rival', alternative incorrect candidates gold_da, gold_tree, gold_feats = self.train_das[tree_no], self.train_trees[tree_no], self.train_feats[tree_no] for strategy in self.rival_gen_strategy: rival_das, rival_trees, rival_feats = self._get_rival_candidates(tree_no, strategy, rgen_max_iter, rgen_max_defic_iter, rgen_beam_size) cands = [gold_feats] + rival_feats # score them along with the right one scores = [self._score(cand) for cand in cands] top_cand_idx = scores.index(max(scores)) top_rival_idx = scores[1:].index(max(scores[1:])) top_rival_tree = rival_trees[top_rival_idx] top_rival_da = rival_das[top_rival_idx] # find the top-scoring generated tree, evaluate against gold t-tree # (disregarding whether it was selected as the best one) self.evaluator.append(TreeNode(gold_tree), TreeNode(top_rival_tree), scores[0], max(scores[1:])) # debug print: candidate trees log_debug('TTREE-NO: %04d, SEL_CAND: %04d, LEN: %02d' % (tree_no, top_cand_idx, len(cands))) log_debug('SENT: %s' % self.train_sents[tree_no]) log_debug('ALL CAND TREES:') for ttree, score in zip([gold_tree] + rival_trees, scores): log_debug("%12.5f" % score, "\t", ttree) # update weights if the system doesn't give the highest score to the right one if top_cand_idx != 0: self._update_weights(gold_da, top_rival_da, gold_tree, top_rival_tree, gold_feats, cands[top_cand_idx]) # store a copy of the current weights for averaging self.store_iter_weights() # debug print: current weights and pass accuracy log_debug(self._feat_val_str(), '\n***') log_debug('PASS ACCURACY: %.3f' % self.evaluator.tree_accuracy()) # print and return statistics self._print_pass_stats(pass_no, datetime.timedelta(seconds=(time.time() - pass_start_time))) def diffing_trees_with_scores(self, da, good_tree, bad_tree): """For debugging purposes. Return a printout of diffing trees between the chosen candidate and the gold tree, along with scores.""" good_sts, bad_sts = good_tree.diffing_trees(bad_tree, symmetric=False) comm_st = good_tree.get_common_subtree(bad_tree) ret = 'Common subtree: %.3f' % self.score(comm_st, da) + "\t" + unicode(comm_st) + "\n" ret += "Good subtrees:\n" for good_st in good_sts: ret += "%.3f" % self.score(good_st, da) + "\t" + unicode(good_st) + "\n" ret += "Bad subtrees:\n" for bad_st in bad_sts: ret += "%.3f" % self.score(bad_st, da) + "\t" + unicode(bad_st) + "\n" return ret def _get_num_iters(self, cur_pass_no, iter_setting): """Return the maximum number of iterations (total/deficit) given the current pass. Used to keep track of variable iteration number setting in configuration.""" if isinstance(iter_setting, (list, tuple)): ret = 0 for set_pass_no, set_iter_no in iter_setting: if set_pass_no > cur_pass_no: break ret = set_iter_no return ret else: return iter_setting # a single setting for all passes def _print_pass_stats(self, pass_no, pass_duration): """Print pass statistics from internal evaluator fields and given pass duration.""" log_info('Pass %05d -- tree-level accuracy: %.4f' % (pass_no, self.evaluator.tree_accuracy())) log_info(' * Generated trees NODE scores: P: %.4f, R: %.4f, F: %.4f' % self.evaluator.p_r_f1()) log_info(' * Generated trees DEP scores: P: %.4f, R: %.4f, F: %.4f' % self.evaluator.p_r_f1(EvalTypes.DEP)) log_info(' * Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %.4f' % self.lists_analyzer.stats()) log_info(' * Tree size stats:\n -- GOLD: %s\n -- PRED: %s\n -- DIFF: %s' % self.evaluator.tree_size_stats()) log_info(' * Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s' % self.evaluator.common_subtree_stats()) log_info(' * Score stats\n -- GOLD: %s\n -- PRED: %s\n -- DIFF: %s' % self.evaluator.score_stats()) log_info(' * Duration: %s' % str(pass_duration)) def _feat_val_str(self, sep='\n', nonzero=False): """Return feature names and values for printing. To be overridden in base classes.""" return '' def _get_rival_candidates(self, tree_no, strategy, max_iter, max_defic_iter, beam_size): """Generate some rival candidates for a DA and the correct (gold) tree, given the current rival generation strategy (self.rival_gen_strategy). TODO: checking for trees identical to the gold one slows down the process TODO: remove other generation strategies, remove support for multiple generated trees @param tree_no: the index of the current training data item (tree, DA) @rtype: tuple of two lists: one of TreeData's, one of arrays @return: an array of rival trees and an array of the corresponding features """ da = self.train_das[tree_no] train_trees = self.train_trees rival_das, rival_trees, rival_feats = [], [], [] if strategy != 'other_da': rival_das = [da] * self.rival_number # use current DA but change trees when computing features if strategy == 'other_inst': # use alternative indexes, avoid the correct one rival_idxs = map(lambda idx: len(train_trees) - 1 if idx == tree_no else idx, rnd.sample(xrange(len(train_trees) - 1), self.rival_number)) other_inst_trees = [train_trees[rival_idx] for rival_idx in rival_idxs] rival_trees.extend(other_inst_trees) rival_feats.extend([self._extract_feats(tree, da) for tree in other_inst_trees]) # use the current gold tree but change DAs when computing features if strategy == 'other_da': rival_idxs = map(lambda idx: len(train_trees) - 1 if idx == tree_no else idx, rnd.sample(xrange(len(train_trees) - 1), self.rival_number)) other_inst_das = [self.train_das[rival_idx] for rival_idx in rival_idxs] rival_das.extend(other_inst_das) rival_trees.extend([self.train_trees[tree_no]] * self.rival_number) rival_feats.extend([self._extract_feats(self.train_trees[tree_no], da) for da in other_inst_das]) # candidates generated using the random planner (use the current DA) if strategy == 'random': random_trees = [] while len(random_trees) < self.rival_number: tree = self.sampling_planner.generate_tree(da) if (tree != train_trees[tree_no]): # don't generate trees identical to the gold one random_trees.append(tree) rival_trees.extend(random_trees) rival_feats.extend([self._extract_feats(tree, da) for tree in random_trees]) # candidates generated using the A*search planner, which uses this ranker with current # weights to guide the search, and the current DA as the input # TODO: use just one!, others are meaningless if strategy == 'gen_cur_weights': open_list, close_list = self.asearch_planner.run(da, max_iter, max_defic_iter, beam_size) self.lists_analyzer.append(train_trees[tree_no], open_list, close_list) gen_trees = [] while close_list and len(gen_trees) < self.rival_number: tree = close_list.pop()[0] if tree != train_trees[tree_no]: gen_trees.append(tree) rival_trees.extend(gen_trees[:self.rival_number]) rival_feats.extend([self._extract_feats(tree, da) for tree in gen_trees[:self.rival_number]]) # return all resulting candidates return rival_das, rival_trees, rival_feats def get_weights(self): """Return the current ranker weights (parameters). To be overridden by derived classes.""" raise NotImplementedError def set_weights(self, w): """Set new ranker weights. To be overridden by derived classes.""" raise NotImplementedError def set_weights_average(self, ws): """Set the weights as the average of the given array of weights (used in parallel training). To be overridden by derived classes.""" raise NotImplementedError def store_iter_weights(self): """Remember the current weights to be used for averaging. To be overridden by derived classes.""" raise NotImplementedError def set_weights_iter_average(self): """Set new weights as the average of all remembered weights. To be overridden by derived classes.""" raise NotImplementedError def get_weights_sum(self): """Return weights size in order to weigh future promise against them.""" raise NotImplementedError def update_weights_sum(self): """Update the current weights size for future promise weighining.""" raise NotImplementedError def reset_diagnostics(self): """Reset the evaluation statistics (Evaluator and ASearchListsAnalyzer objects).""" self.evaluator = Evaluator() self.lists_analyzer = ASearchListsAnalyzer() def get_diagnostics(self): """Return the current evaluation statistics (a tuple of Evaluator and ASearchListsAnalyzer objects.""" return self.evaluator, self.lists_analyzer def set_diagnostics_average(self, diags): """Given an array of evaluation statistics objects, average them an store in this ranker instance.""" self.reset_diagnostics() for evaluator, lists_analyzer in diags: self.evaluator.merge(evaluator) self.lists_analyzer.merge(lists_analyzer) def get_future_promise(self, cand_tree): """Compute expected future promise for a tree.""" w_sum = self.get_weights_sum() if self.future_promise_type == 'num_nodes': return w_sum * self.future_promise_weight * max(0, 10 - len(cand_tree)) elif self.future_promise_type == 'norm_exp_children': return (self.candgen.get_future_promise(cand_tree) / len(cand_tree)) * w_sum * self.future_promise_weight elif self.future_promise_type == 'ands': prom = 0 for idx, node in enumerate(cand_tree.nodes): if node.t_lemma == 'and': num_kids = cand_tree.children_num(idx) prom += max(0, 2 - num_kids) return prom * w_sum * self.future_promise_weight else: # expected children (default) return self.candgen.get_future_promise(cand_tree) * w_sum * self.future_promise_weight def get_future_promise_all(self, cand_trees): """Array version of get_future_promise.""" return [self.get_future_promise(cand_tree) for cand_tree in cand_trees]
def reset_diagnostics(self): """Reset the evaluation statistics (Evaluator and ASearchListsAnalyzer objects).""" self.evaluator = Evaluator() self.lists_analyzer = ASearchListsAnalyzer()
class BasePerceptronRanker(Ranker): def __init__(self, cfg): if not cfg: cfg = {} self.passes = cfg.get('passes', 5) self.alpha = cfg.get('alpha', 1) self.language = cfg.get('language', 'en') self.selector = cfg.get('selector', '') # initialize diagnostics self.lists_analyzer = None self.evaluator = None self.prune_feats = cfg.get('prune_feats', 1) self.rival_number = cfg.get('rival_number', 10) self.averaging = cfg.get('averaging', False) self.randomize = cfg.get('randomize', False) self.future_promise_weight = cfg.get('future_promise_weight', 1.0) self.future_promise_type = cfg.get('future_promise_type', 'expected_children') self.rival_gen_strategy = cfg.get('rival_gen_strategy', ['other_inst']) self.rival_gen_max_iter = cfg.get('rival_gen_max_iter', 50) self.rival_gen_max_defic_iter = cfg.get('rival_gen_max_defic_iter', 3) self.rival_gen_beam_size = cfg.get('rival_gen_beam_size') self.rival_gen_prune_size = cfg.get('rival_gen_prune_size') self.candgen_model = cfg.get('candgen_model') self.diffing_trees = cfg.get('diffing_trees', False) def score(self, cand_tree, da): """Score the given tree in the context of the given dialogue act. @param cand_tree: the candidate tree to be scored, as a TreeData object @param da: a DialogueAct object representing the input dialogue act """ return self._score(self._extract_feats(cand_tree, da)) def score_all(self, cand_trees, da): """Array version of the score() function""" return [self.score(cand_tree, da) for cand_tree in cand_trees] def _extract_feats(self, tree, da): raise NotImplementedError def train(self, das_file, ttree_file, data_portion=1.0): """Run training on the given training data.""" self._init_training(das_file, ttree_file, data_portion) for iter_no in xrange(1, self.passes + 1): self.train_order = range(len(self.train_trees)) if self.randomize: rnd.shuffle(self.train_order) log_info("Train order: " + str(self.train_order)) self._training_pass(iter_no) if self.evaluator.tree_accuracy( ) == 1: # if tree accuracy is 1, we won't learn anything anymore break # averaged perceptron – average the weights obtained after each pass if self.averaging is True: self.set_weights_iter_average() def _init_training(self, das_file, ttree_file, data_portion): """Initialize training (read input data, fix size, initialize candidate generator and planner)""" # read input log_info('Reading DAs from ' + das_file + '...') das = read_das(das_file) log_info('Reading t-trees from ' + ttree_file + '...') ttree_doc = read_ttrees(ttree_file) sents = sentences_from_doc(ttree_doc, self.language, self.selector) trees = trees_from_doc(ttree_doc, self.language, self.selector) # make training data smaller if necessary train_size = int(round(data_portion * len(trees))) self.train_trees = trees[:train_size] self.train_das = das[:train_size] self.train_sents = sents[:train_size] self.train_order = range(len(self.train_trees)) log_info('Using %d training instances.' % train_size) # initialize candidate generator if self.candgen_model is not None: self.candgen = RandomCandidateGenerator.load_from_file( self.candgen_model) # self.sampling_planner = SamplingPlanner({'language': self.language, # 'selector': self.selector, # 'candgen': self.candgen}) # check if A*search planner is needed (i.e., any rival generation strategy requires it) # and initialize it if isinstance(self.rival_gen_strategy[0], tuple): asearch_needed = any([ s in ['gen_cur_weights', 'gen_update'] for _, ss in self.rival_gen_strategy for s in ss ]) else: asearch_needed = any([ s in ['gen_cur_weights', 'gen_update'] for s in self.rival_gen_strategy ]) if asearch_needed: assert self.candgen is not None self.asearch_planner = ASearchPlanner({ 'candgen': self.candgen, 'language': self.language, 'selector': self.selector, 'ranker': self, }) def _training_pass(self, pass_no): """Run one training pass, update weights (store them for possible averaging), and store diagnostic values.""" pass_start_time = time.time() self.reset_diagnostics() self.update_weights_sum() log_debug('\n***\nTR %05d:' % pass_no) rgen_max_iter = self._get_num_iters(pass_no, self.rival_gen_max_iter) rgen_max_defic_iter = self._get_num_iters( pass_no, self.rival_gen_max_defic_iter) rgen_beam_size = self.rival_gen_beam_size rgen_prune_size = self.rival_gen_prune_size rgen_strategy = self._get_rival_gen_strategy(pass_no) for tree_no in self.train_order: log_debug('TREE-NO: %d' % tree_no) log_debug('SENT: %s' % self.train_sents[tree_no]) gold = Inst(da=self.train_das[tree_no], tree=self.train_trees[tree_no], score=self._score(self.train_feats[tree_no]), feats=self.train_feats[tree_no]) # obtain some 'rival', alternative incorrect candidates for strategy in rgen_strategy: # generate using current weights if strategy == 'gen_cur_weights': gen = self._gen_cur_weights(gold, rgen_max_iter, rgen_max_defic_iter, rgen_prune_size, rgen_beam_size) # generate while trying to update weights elif strategy == 'gen_update': gen = self._gen_update(gold, rgen_max_iter, rgen_max_defic_iter, rgen_prune_size, rgen_beam_size) # check against other possible candidates/combinations else: gen = self._get_rival_candidates(gold, tree_no, strategy) # evaluate the top-scoring generated tree against gold t-tree # (disregarding whether it was selected as the best one) self.evaluator.append(TreeNode(gold.tree), TreeNode(gen.tree), gold.score, gen.score) # update weights if the system doesn't give the highest score to the gold standard tree if gold.score < gen.score: self._update_weights(gold, gen) # store a copy of the current weights for averaging self.store_iter_weights() # debug print: current weights and pass accuracy log_debug(self._feat_val_str(), '\n***') log_debug('PASS ACCURACY: %.3f' % self.evaluator.tree_accuracy()) # print and return statistics self._print_pass_stats( pass_no, datetime.timedelta(seconds=(time.time() - pass_start_time))) def diffing_trees_with_scores(self, da, good_tree, bad_tree): """For debugging purposes. Return a printout of diffing trees between the chosen candidate and the gold tree, along with scores.""" good_sts, bad_sts = good_tree.diffing_trees(bad_tree, symmetric=False) comm_st = good_tree.get_common_subtree(bad_tree) ret = 'Common subtree: %.3f' % self.score( comm_st, da) + "\t" + unicode(comm_st) + "\n" ret += "Good subtrees:\n" for good_st in good_sts: ret += "%.3f" % self.score(good_st, da) + "\t" + unicode(good_st) + "\n" ret += "Bad subtrees:\n" for bad_st in bad_sts: ret += "%.3f" % self.score(bad_st, da) + "\t" + unicode(bad_st) + "\n" return ret def _get_num_iters(self, cur_pass_no, iter_setting): """Return the maximum number of iterations (total/deficit) given the current pass. Used to keep track of variable iteration number setting in configuration. @param cur_pass_no: the number of the current pass @param iter_setting: number of iteration setting (self.max_iter or self.max_defic_iter) """ if isinstance(iter_setting, (list, tuple)): ret = 0 for set_pass_no, set_iter_no in iter_setting: if set_pass_no > cur_pass_no: break ret = set_iter_no return ret else: return iter_setting # a single setting for all passes def _get_rival_gen_strategy(self, cur_pass_no): """Return the rival generation strategy/strategies for the current pass. Used to keep track of variable rival generation setting setting in configuration. @param cur_pass_no: the number of the current pass """ if isinstance(self.rival_gen_strategy[0], tuple): ret = [] for set_pass_no, strategies in self.rival_gen_strategy: if set_pass_no > cur_pass_no: break ret = strategies return ret else: return self.rival_gen_strategy # a single setting for all passes def _print_pass_stats(self, pass_no, pass_duration): """Print pass statistics from internal evaluator fields and given pass duration.""" log_info('Pass %05d -- tree-level accuracy: %.4f' % (pass_no, self.evaluator.tree_accuracy())) log_info(' * Generated trees NODE scores: P: %.4f, R: %.4f, F: %.4f' % self.evaluator.p_r_f1()) log_info(' * Generated trees DEP scores: P: %.4f, R: %.4f, F: %.4f' % self.evaluator.p_r_f1(EvalTypes.DEP)) log_info(' * Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %.4f' % self.lists_analyzer.stats()) log_info( ' * Tree size stats:\n -- GOLD: %s\n -- PRED: %s\n -- DIFF: %s' % self.evaluator.size_stats()) log_info( ' * Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s' % self.evaluator.common_substruct_stats()) log_info(' * Score stats\n -- GOLD: %s\n -- PRED: %s\n -- DIFF: %s' % self.evaluator.score_stats()) log_info(' * Duration: %s' % str(pass_duration)) def _feat_val_str(self, sep='\n', nonzero=False): """Return feature names and values for printing. To be overridden in base classes.""" return '' def _get_rival_candidates(self, gold, tree_no, strategy): """Generate some rival candidates for a DA and the correct (gold) tree, given a strategy; using other DAs for the correct tree, other trees for the correct DA, or random trees. NB: This has not been shown to be usable in practice; use _gen_cur_weights() instead. TODO: checking for trees identical to the gold one slows down the process @param tree_no: the index of the current training data item (tree, DA) @rtype: tuple of two lists: one of TreeData's, one of arrays @return: an array of rival trees and an array of the corresponding features """ train_trees = self.train_trees rival_das, rival_trees, rival_feats = [], [], [] if strategy != 'other_da': rival_das = [gold.da] * self.rival_number # use current DA but change trees when computing features if strategy == 'other_inst': # use alternative indexes, avoid the correct one rival_idxs = map( lambda idx: len(train_trees) - 1 if idx == tree_no else idx, rnd.sample(xrange(len(train_trees) - 1), self.rival_number)) other_inst_trees = [ train_trees[rival_idx] for rival_idx in rival_idxs ] rival_trees.extend(other_inst_trees) rival_feats.extend([ self._extract_feats(tree, gold.da) for tree in other_inst_trees ]) # use the current gold tree but change DAs when computing features if strategy == 'other_da': rival_idxs = map( lambda idx: len(train_trees) - 1 if idx == tree_no else idx, rnd.sample(xrange(len(train_trees) - 1), self.rival_number)) other_inst_das = [ self.train_das[rival_idx] for rival_idx in rival_idxs ] rival_das.extend(other_inst_das) rival_trees.extend([self.train_trees[tree_no]] * self.rival_number) rival_feats.extend([ self._extract_feats(self.train_trees[tree_no], da) for da in other_inst_das ]) # # candidates generated using the random planner (use the current DA) # if strategy == 'random': # random_trees = [] # while len(random_trees) < self.rival_number: # tree = self.sampling_planner.generate_tree(da) # if (tree != train_trees[tree_no]): # don't generate trees identical to the gold one # random_trees.append(tree) # rival_trees.extend(random_trees) # rival_feats.extend([self._extract_feats(tree, da) for tree in random_trees]) # score them along with the right one rival_scores = [self._score(r) for r in rival_feats] top_rival_idx = rival_scores.index(max(rival_scores)) gen = Inst(tree=rival_trees[top_rival_idx], da=rival_das[top_rival_idx], score=rival_scores[top_rival_idx], feats=rival_feats[top_rival_idx]) # debug print: candidate trees log_debug('#RIVALS: %02d' % len(rival_feats)) log_debug('SEL: GOLD' if gold.score >= gen.score else ( 'SEL: RIVAL#%d' % top_rival_idx)) log_debug('ALL CAND TREES:') for ttree, score in zip([gold.tree] + rival_trees, [gold.score] + rival_scores): log_debug("%12.5f" % score, "\t", ttree) return gen def _gen_cur_weights(self, gold, max_iter, max_defic_iter, prune_size, beam_size): """ Get the best candidate generated using the A*search planner, which uses this ranker with current weights to guide the search, and the current DA as the input. @param gold: the gold-standard Inst holding the input DA for generation and the reference tree @param max_iter: maximum number of A*-search iterations to run @param max_defic_iter: maximum number of deficit A*-search iterations (stopping criterion) @param prune_size: beam size for open list pruning @param beam_size: beam size for candidate expansion (expand more per iteration if > 1) @return: The best generated tree that is different from the gold-standard tree @rtype: Inst """ log_debug('GEN-CUR-WEIGHTS') # TODO make asearch_planner remember features (for last iteration, maybe) self.asearch_planner.run(gold.da, max_iter, max_defic_iter, prune_size, beam_size) return self.get_best_generated(gold) def get_best_generated(self, gold): """Return the best generated tree that is different from the gold-standard tree (to be used for updates, if it scores better). Also, keep track of logging and update analyzer lists. @param gold: the gold-standard Inst from which the generated tree must differ @rtype: Inst """ self.lists_analyzer.append(gold.tree, self.asearch_planner.open_list, self.asearch_planner.close_list) gen_tree = gold.tree while self.asearch_planner.close_list and gen_tree == gold.tree: gen_tree, gen_score = self.asearch_planner.close_list.pop() # scores are negative on the close list – reverse the sign gen = Inst(tree=gen_tree, da=gold.da, score=-gen_score, feats=self._extract_feats(gen_tree, gold.da)) log_debug('SEL: GOLD' if gold.score >= gen.score else 'SEL: GEN') log_debug("GOLD:\t", "%12.5f" % gold.score, "\t", gold.tree) log_debug("GEN :\t", "%12.5f" % gen.score, "\t", gen.tree) return gen def _gen_update(self, gold, max_iter, max_defic_iter, prune_size, beam_size): """Try generating using the current weights, but update the weights after each iteration if the result is not going in the right direction (not a subtree of the gold-standard tree). @param gold: the gold-standard Inst holding the input DA for generation and the reference tree @param max_iter: maximum number of A*-search iterations to run @param max_defic_iter: maximum number of deficit A*-search iterations (stopping criterion) @param prune_size: beam size for open list pruning @param beam_size: beam size for candidate expansion (expand more per iteration if > 1) @return: The best generated tree that is different from the gold-standard tree @rtype: Inst """ log_debug('GEN-UPDATE') self.asearch_planner.init_run(gold.da, max_iter, max_defic_iter, prune_size, beam_size) while not self.asearch_planner.check_finalize(): # run one A*search iteration self.asearch_planner.run_iter() # stop if there's nothing on the open list if not self.asearch_planner.open_list: break # look if we are on the right track to the gold tree cur_top, score = self.asearch_planner.open_list.peek() csi, _ = gold.tree.common_subtree_idxs(cur_top) # if not, update if len(csi) != len(cur_top): feats = self._extract_feats(cur_top, gold.da) gen = Inst(tree=cur_top, da=gold.da, feats=feats, score=score) # for small wrong trees, # fake the current open list to only include a subtree of the gold tree # TODO fake it better, include more variants # update using a subtree of the gold tree if len(cur_top) < len(gold.tree): diff = sorted(list(set(range(len(gold.tree))) - set(csi)), cmp=gold.tree._compare_node_depth) gold_sub = gold.tree.get_subtree(csi + diff[0:len(cur_top) - len(gold.tree)]) self.asearch_planner.open_list.clear() self.asearch_planner.open_list.push(gold_sub, score) # TODO speed up by remembering the features in planner feats = self._extract_feats(gold_sub, gold.da) gold_sub = Inst(tree=gold_sub, da=gold.da, feats=feats, score=0) self._update_weights(gold_sub, gen) # otherwise, update using the full gold tree else: self._update_weights(gold, gen) return self.get_best_generated(gold) def get_weights(self): """Return the current ranker weights (parameters). To be overridden by derived classes.""" raise NotImplementedError def set_weights(self, w): """Set new ranker weights. To be overridden by derived classes.""" raise NotImplementedError def set_weights_average(self, ws): """Set the weights as the average of the given array of weights (used in parallel training). To be overridden by derived classes.""" raise NotImplementedError def store_iter_weights(self): """Remember the current weights to be used for averaging. To be overridden by derived classes.""" raise NotImplementedError def set_weights_iter_average(self): """Set new weights as the average of all remembered weights. To be overridden by derived classes.""" raise NotImplementedError def get_weights_sum(self): """Return weights size in order to weigh future promise against them.""" raise NotImplementedError def update_weights_sum(self): """Update the current weights size for future promise weighining.""" raise NotImplementedError def reset_diagnostics(self): """Reset the evaluation statistics (Evaluator and ASearchListsAnalyzer objects).""" self.evaluator = Evaluator() self.lists_analyzer = ASearchListsAnalyzer() def get_diagnostics(self): """Return the current evaluation statistics (a tuple of Evaluator and ASearchListsAnalyzer objects.""" return self.evaluator, self.lists_analyzer def set_diagnostics_average(self, diags): """Given an array of evaluation statistics objects, average them an store in this ranker instance.""" self.reset_diagnostics() for evaluator, lists_analyzer in diags: self.evaluator.merge(evaluator) self.lists_analyzer.merge(lists_analyzer) def get_future_promise(self, cand_tree): """Compute expected future promise for a tree.""" w_sum = self.get_weights_sum() if self.future_promise_type == 'num_nodes': return w_sum * self.future_promise_weight * max( 0, 10 - len(cand_tree)) elif self.future_promise_type == 'norm_exp_children': return (self.candgen.get_future_promise(cand_tree) / len(cand_tree)) * w_sum * self.future_promise_weight elif self.future_promise_type == 'ands': prom = 0 for idx, node in enumerate(cand_tree.nodes): if node.t_lemma == 'and': num_kids = cand_tree.children_num(idx) prom += max(0, 2 - num_kids) return prom * w_sum * self.future_promise_weight else: # expected children (default) return self.candgen.get_future_promise( cand_tree) * w_sum * self.future_promise_weight def get_future_promise_all(self, cand_trees): """Array version of get_future_promise.""" return [self.get_future_promise(cand_tree) for cand_tree in cand_trees]
from eval import Evaluator words = ["Le", "Lorem", "Ipsum", "est", "simple"] coefs = [1.0, 2.0, 1.0, 4.0, 0.5] print(Evaluator.zip_evaluate(coefs, words))
from eval import Evaluator words = ["Le", "Lorem", "Ipsum", "est", "simple"] coeffs = [1.0, 2.0, 1.0, 4.0, 0.5] print(Evaluator.zip_evaluate(coeffs, words)) print(Evaluator.enumerate_evaluate(coeffs, words))
from eval import Evaluator words = ["Le", "Lorem", "Ipsum", "est", "simple"] coefs = [1.0, 2.0, 1.0, 4.0, 0.5] r = Evaluator.zip_evaluate(coefs, words) print(r) words = ["Le", "Lorem", "Ipsum", "n'", "est", "pas", "simple"] coefs = [0.0, -1.0, 1.0, -12.0, 0.0, 42.42] r = Evaluator.enumerate_evaluate(coefs, words) print(r)
for name in handle: name = name.split("\n")[0].strip() targets_names.append(name) targets_paths = [] results_paths = [] for name in targets_names: targets_path = os.path.join(paths["targets_path"], name + ".png") targets_paths.append(targets_path) result_path = os.path.join(paths["results_path"] , name + ".npy") results_paths.append(result_path) if __name__ == "__main__": evl = Evaluator(targets_paths , results_paths) P, R, thres = evl.calc_PR_curve(300) plt.plot(R,P) plt.show() f_score = -1 f_thres = -1 index = 0 for p,r,t in zip(P,R,thres.tolist()): if(p == 0 or r == 0): continue f1 = 2*p*r/(p + r) if(f1 > f_score ): f_score = f1 f_thres = t