def run(x,y, f): x_test_true = f.transform(cancer_peptides) x_test_false = f.transform(self_peptides) x_test = np.vstack([x_test_true, x_test_false]) y_test = np.ones(x_test.shape[0], dtype='bool') y_test[len(x_test_true):] = 0 eval_dataset.eval_split(x,y,x_test,y_test)
print print "---" print "No HLA-A2 noisy = negative" X_no_hla_a2_negtive, Y_no_hla_a2_negative = iedb.load_tcell_ngrams( noisy_labels="negative", human=True, max_ngram=2, mhc_class=1, exclude_hla_type=A2 ) eval_dataset.eval_cv(X_no_hla_a2_positive, Y_no_hla_a2_positive) print print "---" print "Cross-accuracy for HLA-A2 data" X_hla_a2, Y_hla_a2 = iedb.load_tcell_ngrams(noisy_labels="keep", human=True, max_ngram=2, mhc_class=1, hla_type=A2) eval_dataset.eval_split(X_no_hla_a2, Y_no_hla_a2, X_hla_a2, Y_hla_a2) print print "---" print "Cross-accuracy for HLA-A2 data filtered" X_hla_a2_filtered, Y_hla_a2_filtered = iedb.load_tcell_ngrams( noisy_labels="drop", human=True, max_ngram=2, mhc_class=1, hla_type=A2 ) eval_dataset.eval_split(X_no_hla_a2_filter, Y_no_hla_a2_filter, X_hla_a2_filtered, Y_hla_a2_filtered) print print "---" print "Cross-accuracy for HLA-A2 data noisy = positive" X_hla_a2_positive, Y_hla_a2_positive = iedb.load_tcell_ngrams(
noisy_labels = 'majority', human = True, mhc_class = 1, exclude_hla_type = 'HLA-A2$|A-\*02') eval_dataset.eval_cv(X_no_hla_a2, Y_no_hla_a2) print print "---" print "Cross-accuracy for HLA-A2 data" X_hla_a2, Y_hla_a2 = iedb.load_tcell_ngrams( noisy_labels = 'majority', human = True, mhc_class = 1, hla_type = 'HLA-A2$|A-\*02') eval_dataset.eval_split(X_no_hla_a2, Y_no_hla_a2, X_hla_a2, Y_hla_a2) print print "---" print "Cross-accuracy for HLA-A2 data filtered (assay_group = cytotoxity)" X_no_hla_a2_cytotoxicity, Y_no_hla_a2_cytotoxicity = iedb.load_tcell_ngrams( noisy_labels = 'majority', assay_group = 'cytotoxicity', human = True, mhc_class = 1, exclude_hla_type = 'HLA-A2$|A-\*02') X_hla_a2_cytotoxicity, Y_hla_a2_cytotoxicity = iedb.load_tcell_ngrams(
def run(x,y, f): x_test = f.transform(cancer_peptides) y_test = np.array([True] * len(cancer_peptides)) eval_dataset.eval_split(x,y,x_test,y_test)