def pred_loop(): # evalu_model, x_ = eval_model.build() global pred_file_name evalu_model, x_ = eval_model.build() while True: # print "waiting" # s_time = time.time() print "pred_loop waiting" vid, cur_fr,n,fileName = q.get() # print "waited",(time.time()-s_time)/1000.,"ms" pred_file_name = fileName.split('/') pred_file_name = pred_file_name[-1].replace(".zip","_prediction.csv") # print "get" # print vid.shape, cur_fr x_.set_value(vid.astype("float32"),borrow=True) pred = evalu_model()[0][0] pred_p = pred.max() pred_idx = pred.argmax()+1 # fps = int(1./((time.time()-time_start)/step)) fr_start = cur_fr+step-n_f fr_end = cur_fr+step # print pred_idx,"\t", "\t",pred_p,"\t",fr_start, "-",fr_end,"\t",fps,'fps' predict(pred_idx,pred_p,fr_start) # print v_new.shape # for i in xrange(v_new.shape[0]): # for j in xrange(v_new.shape[1]): # for k in xrange(v_new.shape[2]): # play_vid(v_new[i,j,k],wait=0) # cur_fr += step # print cur_fr, int(1./((time.time()-time_start)/step)),'fps' if cur_fr+2*step>=n: reinit()
# data = "/media/Data/mp/chalearn2014/40x90x90_train" # data = "/home/lio/mp/chalearn2014/train_raw" # data = "/home/lio/mp/chalearn2014/valid" # dst = "/home/lio/Dropbox/MP/chalearn2014/evaluation/results/test" data = "E:/mp/chalearn2014/train_raw" dst = "C:/Users/lio/Dropbox/MP/chalearn2014/evaluation/results/test" pp.make_sure_path_exists(dst) step = 5 n_f = 32 pred_file_name = '' h = vid_shape[-1] # q = Queue(10) # q2 = Queue(20) evalu_model, x_ = eval_model.build() # def eval(fileName): # @profile def eval(): global pred_file_name # pred_file_name = fileName.split('/') # pred_file_name = pred_file_name[-1].replace(".zip","_prediction.csv") # print fileName files = glob(data+"/"+"*.zip") files.sort() print len(files), "found"