Example #1
0
def test(params):
    global priors
    global step
    global order
    global with_offset
    print(params)
    
    transitions = np.zeros((88, 2 ** order, 2))
    for i in range(88):
        transitions[i, :, 0] = params
        transitions[i, :, 1] = 1 - transitions[i, :, 0]
    
    frames = np.zeros((0, 3))
    notes = np.zeros((0, 3))
    
    folder = "data/outputs-20/valid"
    for file in glob.glob(os.path.join(folder, "*.mid")):
        print(file)
        sys.stdout.flush()
        
        data = DataMaps()
        data.make_from_file(file, step, [0, 30], acoustic_model="kelz")
        
        pr = hmm_eval.decode_all_pitches(data.input, priors, transitions)

        if step != "time":
            pr = convert_note_to_time(pr, data.corresp, data.input_fs, max_len=30)

        data = DataMaps()
        data.make_from_file(file, "time", section=[0, 30], acoustic_model="kelz")
        target = data.target

        #Evaluate
        P_f,R_f,F_f = compute_eval_metrics_frame(pr, target)
        P_n,R_n,F_n = compute_eval_metrics_note(pr, target, min_dur=0.05, with_offset=with_offset)
        
        print(f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}")
        sys.stdout.flush()

        frames = np.vstack((frames, [P_f, R_f, F_f]))
        notes = np.vstack((notes, [P_n, R_n, F_n]))

    P_f, R_f, F_f = np.mean(frames, axis=0)
    P_n, R_n, F_n = np.mean(notes, axis=0)
    
    print(f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}")
    print(str(F_n) + ": " + str(params))
    sys.stdout.flush()
    
    out = "hmm/models/" + step + "." + str(order) + "." + str(F_n) + ".pkl"
    with open(out, "wb") as file:
        pickle.dump({"priors" : priors,
                     "transitions" : transitions}, file)
    
    
    return -F_n
    results = {}

    for midi_name in os.listdir(input_folder):
        if not midi_name.startswith('.') and midi_name.endswith('.mid'):
            print(midi_name)

            input_midi = pm.PrettyMIDI(os.path.join(input_folder, midi_name))
            target_midi = pm.PrettyMIDI(os.path.join(target_folder, midi_name))

            output = (input_midi.get_piano_roll(fs) > 0).astype(int)
            output = output[:, int(section[0] * fs):int(section[1] * fs)]
            target = (target_midi.get_piano_roll(fs) > 0).astype(int)
            target = target[:, int(section[0] * fs):int(section[1] * fs)]

            P_f, R_f, F_f = compute_eval_metrics_frame(output, target)

            notes_est, intervals_est = [], []

            for note in sum([instr.notes for instr in input_midi.instruments],
                            []):
                if section is None or (note.start < section[1]
                                       and note.end > section[0]):
                    ### +21-1 because in get_notes_intervals_with_onsets, we add +1 so that pitches are not equal to 0
                    notes_est += [note.pitch]
                    intervals_est += [[
                        max(note.start, section[0]),
                        min(note.end, section[1])
                    ]]
            notes_est = np.array(notes_est)
            intervals_est = np.array(intervals_est)
Example #3
0
def weight_search(params, num=0, verbose=False):
    print(params)
    sys.stdout.flush()

    gt = params[0]
    min_diff = params[1]
    history = int(params[2])
    num_layers = int(params[3])
    is_weight = params[4]
    features = params[5]

    history_context = 0
    prior_context = 0

    if len(params) > 6:
        history_context = params[6]
        prior_context = params[7]

    use_lstm = True
    if len(params) > 8:
        use_lstm = params[8]

    warnings.filterwarnings("ignore", message="tick should be an int.")

    max_len = 30
    section = [0, max_len]

    note_range = [21, 109]
    note_min = note_range[0]
    note_max = note_range[1]

    # Load model
    model = model_dict['model']
    sess = model_dict['sess']

    # Get weight_model data
    pkl = data_dict['gt' if gt else 'beam']

    X = pkl['X']
    Y = pkl['Y']
    D = pkl['D']
    max_history = pkl['history']
    no_mlm = pkl['no_mlm'] if 'no_mlm' in pkl else False

    if np.max(D) < min_diff:
        print("No training data generated")
        sys.stdout.flush()
        return 0.0

    data_points = np.where(D > min_diff)
    data_features = []

    if history > 0:
        data_features.extend(range(max_history - history, max_history))

    if features:
        data_features.extend(range(max_history, len(X[0]) - 2))

    data_features.append(-2)

    if use_lstm:
        data_features.append(-1)

    X = X[:, data_features]

    if prior_context + history_context > 0:
        X_new = np.zeros(
            (X.shape[0],
             X.shape[1] + prior_context * 4 + 2 * history_context * history))

        for i in range(int(X.shape[0] / 88)):
            x_frame = X[88 * i:88 * (i + 1), :]

            X_new[88 * i:88 * (i + 1), :] = pad_x(x_frame, x_frame[:, -2],
                                                  x_frame[:, -1],
                                                  x_frame[:, :history],
                                                  history, history_context,
                                                  prior_context)

        X = X_new

    X = X[data_points]
    Y = Y[data_points]

    if len(X) == 0:
        print("No training data generated")
        sys.stdout.flush()
        return 0.0

    # Train weight model
    print("Training weight model")
    sys.stdout.flush()
    layers = []
    for i in range(num_layers):
        layers.append(5)

    weight_model = train_model(X, Y, layers=layers, weight=is_weight)

    global most_recent_model
    most_recent_model = {
        'model': weight_model,
        'history': history,
        'features': features,
        'weight': is_weight,
        'history_context': history_context,
        'prior_context': prior_context,
        'use_lstm': use_lstm,
        'no_mlm': no_mlm
    }

    weight_model_name = "weight_model."
    weight_model_name += "gt" if gt else "b10"
    weight_model_name += "_md" + str(min_diff)
    weight_model_name += "_h" + str(history)
    weight_model_name += "_l" + str(num_layers)
    if features:
        weight_model_name += "_f"
    weight_model_name += "_hc" + str(history_context)
    weight_model_name += "_pc" + str(prior_context)
    if not use_lstm:
        weight_model_name += "_noLSTM"
    if no_mlm:
        weight_model_name += "_noMLM"
    weight_model_name += "_weight" if is_weight else "_prior"
    weight_model_name += "." + global_params['step'] + "." + str(num) + ".pkl"

    # Write out weight model
    with open(os.path.join(global_params['model_out'], weight_model_name),
              "wb") as file:
        pickle.dump(most_recent_model, file)

    results = {}
    frames = np.zeros((0, 3))
    notes = np.zeros((0, 3))

    for filename in glob.glob(os.path.join(data_dict['valid'], "*.mid")):
        print(filename)
        sys.stdout.flush()

        data = DataMaps()
        data.make_from_file(filename,
                            global_params['step'],
                            section,
                            acoustic_model=global_params['acoustic'])

        # Decode
        pr, priors, weights, combined_priors = decode(
            data.input,
            model,
            sess,
            branch_factor=5,
            beam_size=50,
            weight=[[0.8], [0.2]],
            out=None,
            hash_length=12,
            weight_model=weight_model,
            verbose=verbose,
            weight_model_dict=most_recent_model)

        if global_params['step'] != "time":
            pr = convert_note_to_time(pr,
                                      data.corresp,
                                      data.input_fs,
                                      max_len=max_len)

        data = DataMaps()
        data.make_from_file(filename,
                            "time",
                            section=section,
                            acoustic_model=global_params['acoustic'])
        target = data.target

        #Evaluate
        P_f, R_f, F_f = compute_eval_metrics_frame(pr, target)
        P_n, R_n, F_n = compute_eval_metrics_note(pr, target, min_dur=0.05)

        print(
            f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}"
        )
        sys.stdout.flush()

        frames = np.vstack((frames, [P_f, R_f, F_f]))
        notes = np.vstack((notes, [P_n, R_n, F_n]))

        if F_n < global_params['early_exit']:
            print("Early stopping, F-measure too low.")
            sys.stdout.flush()
            return 0.0

    P_f, R_f, F_f = np.mean(frames, axis=0)
    P_n, R_n, F_n = np.mean(notes, axis=0)

    print(
        f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}"
    )
    print(str(F_n) + ": " + str(params))
    sys.stdout.flush()
    return -F_n
Example #4
0
                                              max_len=30)
        if args.step == 'time' and args.with_quant:
            data_quant = DataMaps()
            data_quant.make_from_file(filename_target,
                                      'quant', [0, 30],
                                      acoustic_model='kelz')
            input_roll = align_matrix(input_roll,
                                      data_quant.corresp,
                                      data_quant.input_fs,
                                      method='quant')
            input_roll = convert_note_to_time(input_roll,
                                              data_quant.corresp,
                                              data_quant.input_fs,
                                              max_len=30)

        P_f, R_f, F_f = compute_eval_metrics_frame(input_roll, target_roll)
        P_n, R_n, F_n = compute_eval_metrics_note(
            input_roll,
            target_roll,
            min_dur=0.05,
            with_offset=args.with_offset,
            min_gap=0.05 if args.gap else None)
        err_FP, err_tot, err_FP_o, err_tot_o = out_key_errors_binary_mask(
            input_roll, target_roll, mask, mask_octave)

        print(
            f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}"
        )
        print(
            f"Out-key-errors FP: {err_FP:.3f}, Total: {err_tot:.3f}, OctaveFP: {err_FP_o:.3f}, OctaveTotal: {err_tot_o:.3f}"
        )
Example #5
0
        pr = decode_all_pitches(data.input, priors, transitions)

        # Save output
        if not args.save is None:
            np.save(os.path.join(args.save, base.replace('.mid','_pr')), pr)
            np.savetxt(os.path.join(args.save, base.replace('.mid','_pr.csv')), pr)

        if args.step in ['quant','event','beat']:
            pr = convert_note_to_time(pr, data.corresp, data.input_fs, max_len=max_len)

        data = DataMaps()
        data.make_from_file(file, "time", section=section, acoustic_model="kelz")
        target = data.target

        #Evaluate
        P_f,R_f,F_f = compute_eval_metrics_frame(pr, target)
        P_n,R_n,F_n = compute_eval_metrics_note(pr, target, min_dur=0.05)

        frames = np.vstack((frames, [P_f, R_f, F_f]))
        notes = np.vstack((notes, [P_n, R_n, F_n]))

        print(f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}")
        sys.stdout.flush()

        results[base] = [[P_f,R_f,F_f],[P_n,R_n,F_n]]

    P_f, R_f, F_f = np.mean(frames, axis=0)
    P_n, R_n, F_n = np.mean(notes, axis=0)
    print(f"Averages: Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}")
    sys.stdout.flush()
Example #6
0
def weight_search(params, num=0, verbose=False):
    global global_params
    print(params)
    sys.stdout.flush()

    # Parse params
    min_diff = params[0]
    history = int(params[1])
    num_layers = int(params[2])
    is_weight = params[3]
    features = params[4]

    warnings.filterwarnings("ignore", message="tick should be an int.")

    max_len = 30
    section = [0, max_len]

    # Load model
    model = model_dict['model']
    sess = model_dict['sess']

    # Get weight_model data
    pkl = data_dict['blending_data']

    X = pkl['X']
    Y = pkl['Y']
    D = pkl['D']
    max_history = pkl['history']
    features_available = pkl['features']
    with_onsets = pkl['with_onsets']

    # Filter data for min_diff
    X, Y = filter_data_by_min_diff(
        X, Y,
        np.maximum(D[:, 0], D[:, 1]) if with_onsets else D, min_diff)
    if len(X) == 0:
        print("No training data generated.")
        sys.stdout.flush()
        return 0.0

    # Filter X for desired input fields
    X = filter_X_features(X, history, max_history, features,
                          features_available, with_onsets)

    # Ablate X
    X = ablate(X, global_params['ablate'], with_onsets=with_onsets)

    history = min(history, max_history)
    if features and not features_available:
        features = False

    # Train weight model
    print("Training weight model")
    sys.stdout.flush()
    layers = []
    for i in range(num_layers):
        layers.append(10 if with_onsets else 5)

    weight_model = train_model(X,
                               Y,
                               layers=layers,
                               weight=is_weight,
                               with_onsets=with_onsets)

    # Save model
    global most_recent_model
    most_recent_model = {
        'model': weight_model,
        'history': history,
        'features': features,
        'weight': is_weight,
        'with_onsets': with_onsets,
        'ablate': global_params['ablate']
    }

    weight_model_name = get_filename(min_diff, history, num_layers, features,
                                     with_onsets, is_weight,
                                     global_params['step'])

    # Write out weight model
    with open(os.path.join(global_params['model_out'], weight_model_name),
              "wb") as file:
        pickle.dump(most_recent_model, file)

    # Evaluation
    results = {}
    frames = np.zeros((0, 3))
    notes = np.zeros((0, 3))

    for filename in sorted(glob.glob(os.path.join(data_dict['valid'],
                                                  "*.mid"))):
        print(filename)
        sys.stdout.flush()

        if global_params['step'] == 'beat':
            data = DataMapsBeats()
            data.make_from_file(filename,
                                global_params['beat_gt'],
                                global_params['beat_subdiv'],
                                section,
                                acoustic_model=global_params['acoustic'],
                                with_onsets=with_onsets)
        else:
            data = DataMaps()
            data.make_from_file(filename,
                                global_params['step'],
                                section,
                                acoustic_model=global_params['acoustic'],
                                with_onsets=with_onsets)

        # Decode
        input_data = data.input
        if with_onsets:
            input_data = np.zeros(
                (data.input.shape[0] * 2, data.input.shape[1]))
            input_data[:data.input.shape[0], :] = data.input[:, :, 0]
            input_data[data.input.shape[0]:, :] = data.input[:, :, 1]

        # Add noise
        input_data = add_noise_to_input_data(input_data, data_dict['noise'],
                                             data_dict['noise_gauss'])

        pr, priors, weights, combined_priors = decode(
            input_data,
            model,
            sess,
            branch_factor=5,
            beam_size=50,
            weight=[[0.8], [0.2]],
            out=None,
            hash_length=12,
            weight_model=weight_model,
            verbose=verbose,
            weight_model_dict=most_recent_model)

        # Evaluate
        if with_onsets:
            target_data = pm.PrettyMIDI(filename)
            corresp = data.corresp
            [P_f, R_f,
             F_f], [P_n, R_n, F_n
                    ], _, _ = compute_eval_metrics_with_onset(pr,
                                                              corresp,
                                                              target_data,
                                                              double_roll=True,
                                                              min_dur=0.05,
                                                              section=section)

        else:
            if global_params['step'] in [
                    'quant', 'event', 'quant_short', 'beat'
            ]:
                pr = convert_note_to_time(pr,
                                          data.corresp,
                                          data.input_fs,
                                          max_len=max_len)

            data = DataMaps()
            if global_params['step'] == "20ms" or with_onsets:
                data.make_from_file(filename,
                                    "20ms",
                                    section=section,
                                    with_onsets=False,
                                    acoustic_model="kelz")
            else:
                data.make_from_file(filename,
                                    "time",
                                    section=section,
                                    with_onsets=False,
                                    acoustic_model="kelz")
            target = data.target

            #Evaluate
            P_f, R_f, F_f = compute_eval_metrics_frame(pr, target)
            P_n, R_n, F_n = compute_eval_metrics_note(pr, target, min_dur=0.05)

        print(
            f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}"
        )
        sys.stdout.flush()

        frames = np.vstack((frames, [P_f, R_f, F_f]))
        notes = np.vstack((notes, [P_n, R_n, F_n]))

        if F_n < global_params['early_exit']:
            print("Early stopping, F-measure too low.")
            sys.stdout.flush()
            return 0.0

    P_f, R_f, F_f = np.mean(frames, axis=0)
    P_n, R_n, F_n = np.mean(notes, axis=0)

    print(
        f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}"
    )
    print(str(F_n) + ": " + str(params))
    sys.stdout.flush()
    return -F_n
Example #7
0
            hash_length=args.hash,
            weight_model_dict=weight_model_dict,
            verbose=args.verbose,
            gt=data.target if args.gt else None,
            weight_model=weight_model)

        # Evaluate
        if args.output is not None:
            np.save(os.path.join(args.output, "pr"), pr)
            np.save(os.path.join(args.output, "priors"), priors)
            np.save(os.path.join(args.output, "weights"), weights)
            np.save(os.path.join(args.output, "combined_priors"),
                    combined_priors)
        if args.step in ['quant', 'event']:
            pr = dataMaps.convert_note_to_time(pr,
                                               data.corresp,
                                               max_len=max_len)

    data = dataMaps.DataMaps()
    data.make_from_file(args.MIDI, "time", section=section)
    target = data.target

    P_f, R_f, F_f = eval_utils.compute_eval_metrics_frame(pr, target)
    P_n, R_n, F_n = eval_utils.compute_eval_metrics_note(pr,
                                                         target,
                                                         min_dur=0.05)

    print(
        f"Frame P,R,F: {P_f:.3f},{R_f:.3f},{F_f:.3f}, Note P,R,F: {P_n:.3f},{R_n:.3f},{F_n:.3f}"
    )