def test_stacked_ensemble_n_jobs_negative_one(
        X_y_regression, linear_regression_pipeline_class):
    X, y = X_y_regression
    input_pipelines = [linear_regression_pipeline_class(parameters={})]
    clf = StackedEnsembleRegressor(input_pipelines=input_pipelines)
    expected_parameters = {
        "input_pipelines": input_pipelines,
        "final_estimator": None,
        'cv': None,
        'n_jobs': -1
    }
    assert clf.parameters == expected_parameters
    clf.fit(X, y)
    y_pred = clf.predict(X)
    assert len(y_pred) == len(y)
    assert not np.isnan(y_pred.to_series()).all()
Example #2
0
def test_stacked_ensemble_init_with_multiple_same_estimators(X_y_regression, linear_regression_pipeline_class):
    # Checks that it is okay to pass multiple of the same type of estimator
    X, y = X_y_regression
    input_pipelines = [linear_regression_pipeline_class(parameters={}),
                       linear_regression_pipeline_class(parameters={})]
    clf = StackedEnsembleRegressor(input_pipelines=input_pipelines, n_jobs=1)
    expected_parameters = {
        "input_pipelines": input_pipelines,
        "final_estimator": None,
        'cv': None,
        'n_jobs': 1
    }
    assert clf.parameters == expected_parameters

    fitted = clf.fit(X, y)
    assert isinstance(fitted, StackedEnsembleRegressor)

    y_pred = clf.predict(X)
    assert len(y_pred) == len(y)
    assert not np.isnan(y_pred).all()