def __init__(self, embedding_file, graph_path, params={}): Evaluation.__init__(self) self._embedding_file = embedding_file self._graph_path = graph_path self._directed = params['directed'] if 'directed' in params else False self.results = None
def __init__(self, config): BaseAgent.__init__(self, config) Evaluation.__init__(self, self.config.metrics_k) self.metrics_k = config.metrics_k self.state_config = self.config.hyperparameters["State"] self.embedding = self.get_embedding().to(self.device) self.embedding_dim = self.embedding.embedding_dim # Initialize state-module self.state_agg = RNNStateAgg(self.embedding, state_config=self.state_config, reward_range=[0, 1], with_rewards=False).to(self.device) self.state_size = self.state_agg.state_size self.state_optimizer = self.create_state_optimizer() if self.config.hyperparameters[ "state-only-pretrain"] or self.config.hyperparameters[ "pretrain"]: save_dir = Path(config.file_to_save_model).parent / "pretrain" self.pretrain_model_saver = ModelSaver(save_dir) if self.config.hyperparameters["state-only-pretrain"]: self.output_layer = torch.nn.Linear( self.state_size, self.environment.action_space.n).to(self.device) self.output_layer_optimizer = torch.optim.Adam( self.output_layer.parameters()) self.user_history_mask_items = None self.masking_enabled = self.hyperparameters.get("history_masking") self.model_saver = ModelSaver(Path(config.file_to_save_model).parent) self.exploration_strategy = Epsilon_Greedy_Exploration(self.config) self.last_done = np.zeros(self.environment.num_envs, dtype=np.bool)
def __init__(self, train_env, k): Evaluation.__init__(self, k) self.train_env = train_env