Example #1
0
    def predict_libfm(self):
        print('predict: %s' % time.strftime("%Y/%m/%d-%H:%M:%S"))

        run_libfm(self.context_train_file, self.context_test_file,
                  self.context_predictions_file, self.context_log_file)
        self.predictions = rmse_calculator.read_targets_from_txt(
            self.context_predictions_file)
Example #2
0
def main_evaluate():
    I = my_i

    records = ETLUtils.load_json_file(RECORDS_FILE)
    # print('num_records', len(records))

    test_file = RECORDS_FILE + '_test'
    test_records = ETLUtils.load_json_file(test_file)

    top_n_evaluator = TopNEvaluator(records, test_records, DATASET, 10, I)
    top_n_evaluator.find_important_records()
    # top_n_evaluator.initialize()

    # records_to_predict_file = DATASET_FOLDER + 'generated/records_to_predict_' + DATASET + '.json'
    top_n_evaluator.load_records_to_predict(RECORDS_TO_PREDICT_FILE)

    predictions_file = GENERATED_FOLDER + 'predictions_' + DATASET + '.txt'
    predictions = rmse_calculator.read_targets_from_txt(predictions_file)

    # print('total predictions', len(predictions))
    top_n_evaluator.evaluate(predictions)
    # print('precision', top_n_evaluator.precision)
    print('recall', top_n_evaluator.recall)

    return top_n_evaluator.recall
Example #3
0
    def evaluate(self):
        print('evaluate: %s' % time.strftime("%Y/%d/%m-%H:%M:%S"))

        predictions = rmse_calculator.read_targets_from_txt(
            self.no_context_predictions_file)
        self.top_n_evaluator.evaluate(predictions)
        no_context_recall = self.top_n_evaluator.recall

        predictions = rmse_calculator.read_targets_from_txt(
            self.context_predictions_file)
        self.top_n_evaluator.evaluate(predictions)
        context_recall = self.top_n_evaluator.recall

        print('No context recall: %f' % no_context_recall)
        print('Context recall: %f' % context_recall)

        return context_recall, no_context_recall
    def predict_libfm(self):
        print('predict: %s' % time.strftime("%Y/%m/%d-%H:%M:%S"))

        run_libfm(
            self.context_train_file, self.context_test_file,
            self.context_predictions_file, self.context_log_file)
        self.predictions = rmse_calculator.read_targets_from_txt(
            self.context_predictions_file)
    def evaluate(self):
        print('evaluate: %s' % time.strftime("%Y/%m/%d-%H:%M:%S"))

        predictions = rmse_calculator.read_targets_from_txt(
            self.context_predictions_file)
        self.top_n_evaluator.evaluate(predictions)
        recall = self.top_n_evaluator.recall

        print('Recall: %f' % recall)
        print('Specific recall: %f' % self.top_n_evaluator.specific_recall)
        print('Generic recall: %f' % self.top_n_evaluator.generic_recall)

        return recall