Example #1
0
    def test(self, multilabel_threshold=0.5):
        if not self.include_test:
            raise ValueError('Please do not call .test() if no test data is available.')

        score_dict = {}

        # get test predictions:
        test_in = {}
        if self.include_token:
            test_in['focus_in'] = self.test_X_focus
        if self.include_context:
            test_in['context_in'] = self.test_contexts

        test_preds = self.model.predict(test_in,
                                batch_size=self.batch_size)

        if isinstance(test_preds, np.ndarray):
            test_preds = [test_preds]

        if self.include_lemma:
            print('::: Test scores (lemmas) :::')
            
            pred_lemmas = self.preprocessor.inverse_transform_lemmas(predictions=test_preds[self.lemma_out_idx])
            if self.postcorrect:
                for i in range(len(pred_lemmas)):
                    if pred_lemmas[i] not in self.known_lemmas:
                        pred_lemmas[i] = min(self.known_lemmas,
                                        key=lambda x: editdistance.eval(x, pred_lemmas[i]))
            score_dict['test_lemma'] = evaluation.single_label_accuracies(gold=self.test_lemmas,
                                                 silver=pred_lemmas,
                                                 test_tokens=self.test_tokens,
                                                 known_tokens=self.preprocessor.known_tokens)

        if self.include_pos:
            print('::: Test scores (pos) :::')
            pred_pos = self.preprocessor.inverse_transform_pos(predictions=test_preds[self.pos_out_idx])
            score_dict['test_pos'] = evaluation.single_label_accuracies(gold=self.test_pos,
                                                 silver=pred_pos,
                                                 test_tokens=self.test_tokens,
                                                 known_tokens=self.preprocessor.known_tokens)
        
        if self.include_morph:     
            print('::: Test scores (morph) :::')
            pred_morph = self.preprocessor.inverse_transform_morph(predictions=test_preds[self.morph_out_idx],
                                                                   threshold=multilabel_threshold)
            if self.include_morph == 'label':
                score_dict['test_morph'] = evaluation.single_label_accuracies(gold=self.test_morph,
                                                 silver=pred_morph,
                                                 test_tokens=self.test_tokens,
                                                 known_tokens=self.preprocessor.known_tokens)                
            elif self.include_morph == 'multilabel':
                score_dict['test_morph'] = evaluation.multilabel_accuracies(gold=self.test_morph,
                                                 silver=pred_morph,
                                                 test_tokens=self.test_tokens,
                                                 known_tokens=self.preprocessor.known_tokens)
        return score_dict
Example #2
0
    def epoch(self, autosave=True):
        if not self.setup:
            raise ValueError('Not set up yet... Call Tagger.setup_() first.')

        # update nb of epochs ran so far:
        self.curr_nb_epochs += 1
        print("-> epoch ", self.curr_nb_epochs, "...")

        if self.curr_nb_epochs and self.halve_lr_at:
            # update learning rate at specific points:
            if self.curr_nb_epochs % self.halve_lr_at == 0:
                old_lr  = self.model.optimizer.lr.get_value()
                new_lr = np.float32(old_lr * 0.5)
                self.model.optimizer.lr.set_value(new_lr)
                print('\t- Lowering learning rate > was:', old_lr, ', now:', new_lr)

        # get inputs and outputs straight:
        train_in, train_out = {}, {}
        if self.include_token:
            train_in['focus_in'] = self.train_X_focus
        if self.include_context:
            train_in['context_in'] = self.train_contexts

        if self.include_lemma:
            train_out['lemma_out'] = self.train_X_lemma
        if self.include_pos:
            train_out['pos_out'] = self.train_X_pos
        if self.include_morph:
            train_out['morph_out'] = self.train_X_morph
        
        self.model.fit(train_in, train_out,
              nb_epoch = 1,
              shuffle = True,
              batch_size = self.batch_size)

        # get train preds:
        train_preds = self.model.predict(train_in,
                                batch_size=self.batch_size)
        if isinstance(train_preds, np.ndarray):
            train_preds = [train_preds]

        if self.include_dev:
            dev_in = {}
            if self.include_token:
                dev_in['focus_in'] = self.dev_X_focus
            if self.include_context:
                dev_in['context_in'] = self.dev_contexts

            dev_preds = self.model.predict(dev_in,
                                    batch_size=self.batch_size)
            if isinstance(dev_preds, np.ndarray):
                dev_preds = [dev_preds]

        score_dict = {}
        if self.include_lemma:
            print('::: Train scores (lemmas) :::')
            pred_lemmas = self.preprocessor.inverse_transform_lemmas(predictions=train_preds[self.lemma_out_idx])
            score_dict['train_lemma'] = evaluation.single_label_accuracies(gold=self.train_lemmas,
                                                 silver=pred_lemmas,
                                                 test_tokens=self.train_tokens,
                                                 known_tokens=self.preprocessor.known_tokens)
            if self.include_dev:
                print('::: Dev scores (lemmas) :::')
                pred_lemmas = self.preprocessor.inverse_transform_lemmas(predictions=dev_preds[self.lemma_out_idx])
                score_dict['dev_lemma'] = evaluation.single_label_accuracies(gold=self.dev_lemmas,
                                                     silver=pred_lemmas,
                                                     test_tokens=self.dev_tokens,
                                                     known_tokens=self.preprocessor.known_tokens)
                
                if self.postcorrect:
                    print('::: Dev scores (lemmas) -> postcorrected :::')
                    for i in range(len(pred_lemmas)):
                        if pred_lemmas[i] not in self.known_lemmas:
                            pred_lemmas[i] = min(self.known_lemmas,
                                            key=lambda x: editdistance.eval(x, pred_lemmas[i]))
                    score_dict['dev_lemma_postcorrect'] = evaluation.single_label_accuracies(gold=self.dev_lemmas,
                                                     silver=pred_lemmas,
                                                     test_tokens=self.dev_tokens,
                                                     known_tokens=self.preprocessor.known_tokens)

        if self.include_pos:
            print('::: Train scores (pos) :::')
            pred_pos = self.preprocessor.inverse_transform_pos(predictions=train_preds[self.pos_out_idx])
            score_dict['train_pos'] = evaluation.single_label_accuracies(gold=self.train_pos,
                                                 silver=pred_pos,
                                                 test_tokens=self.train_tokens,
                                                 known_tokens=self.preprocessor.known_tokens)
            if self.include_dev:
                print('::: Dev scores (pos) :::')
                pred_pos = self.preprocessor.inverse_transform_pos(predictions=dev_preds[self.pos_out_idx])
                score_dict['dev_pos'] = evaluation.single_label_accuracies(gold=self.dev_pos,
                                                     silver=pred_pos,
                                                     test_tokens=self.dev_tokens,
                                                     known_tokens=self.preprocessor.known_tokens)
        
        if self.include_morph:
            print('::: Train scores (morph) :::')
            pred_morph = self.preprocessor.inverse_transform_morph(predictions=train_preds[self.morph_out_idx])
            if self.include_morph == 'label':
                score_dict['train_morph'] = evaluation.single_label_accuracies(gold=self.train_morph,
                                                 silver=pred_morph,
                                                 test_tokens=self.train_tokens,
                                                 known_tokens=self.preprocessor.known_tokens)
            elif self.include_morph == 'multilabel':
                score_dict['train_morph'] = evaluation.multilabel_accuracies(gold=self.train_morph,
                                                 silver=pred_morph,
                                                 test_tokens=self.train_tokens,
                                                 known_tokens=self.preprocessor.known_tokens)


            if self.include_dev:
                print('::: Dev scores (morph) :::')
                pred_morph = self.preprocessor.inverse_transform_morph(predictions=dev_preds[self.morph_out_idx])
                if self.include_morph == 'label':
                    score_dict['dev_morph'] = evaluation.single_label_accuracies(gold=self.train_morph,
                                                     silver=pred_morph,
                                                     test_tokens=self.dev_tokens,
                                                     known_tokens=self.preprocessor.known_tokens)
                elif self.include_morph == 'multilabel':
                    score_dict['dev_morph'] = evaluation.multilabel_accuracies(gold=self.train_morph,
                                                     silver=pred_morph,
                                                     test_tokens=self.dev_tokens,
                                                     known_tokens=self.preprocessor.known_tokens)

        if autosave:
            self.save()
        
        return score_dict
Example #3
0
    def epoch(self, autosave=True):
        if not self.setup:
            raise ValueError('Not set up yet... Call Tagger.setup_() first.')

        # update nb of epochs ran so far:
        self.curr_nb_epochs += 1
        print("-> epoch ", self.curr_nb_epochs, "...")

        if self.curr_nb_epochs and self.halve_lr_at:
            # update learning rate at specific points:
            if self.curr_nb_epochs % self.halve_lr_at == 0:
                old_lr = self.model.optimizer.lr.get_value()
                new_lr = np.float32(old_lr * 0.5)
                self.model.optimizer.lr.set_value(new_lr)
                print('\t- Lowering learning rate > was:', old_lr, ', now:',
                      new_lr)

        # get inputs and outputs straight:
        train_in, train_out = {}, {}
        if self.include_token:
            train_in['focus_in'] = self.train_X_focus
        if self.include_context:
            train_in['context_in'] = self.train_contexts

        if self.include_lemma:
            train_out['lemma_out'] = self.train_X_lemma
        if self.include_pos:
            train_out['pos_out'] = self.train_X_pos
        if self.include_morph:
            train_out['morph_out'] = self.train_X_morph

        self.model.fit(train_in,
                       train_out,
                       nb_epoch=1,
                       shuffle=True,
                       batch_size=self.batch_size)

        # get train preds:
        train_preds = self.model.predict(train_in, batch_size=self.batch_size)
        if isinstance(train_preds, np.ndarray):
            train_preds = [train_preds]

        if self.include_dev:
            dev_in = {}
            if self.include_token:
                dev_in['focus_in'] = self.dev_X_focus
            if self.include_context:
                dev_in['context_in'] = self.dev_contexts

            dev_preds = self.model.predict(dev_in, batch_size=self.batch_size)
            if isinstance(dev_preds, np.ndarray):
                dev_preds = [dev_preds]

        score_dict = {}
        if self.include_lemma:
            print('::: Train scores (lemmas) :::')
            pred_lemmas = self.preprocessor.inverse_transform_lemmas(
                predictions=train_preds[self.lemma_out_idx])
            score_dict['train_lemma'] = evaluation.single_label_accuracies(
                gold=self.train_lemmas,
                silver=pred_lemmas,
                test_tokens=self.train_tokens,
                known_tokens=self.preprocessor.known_tokens)
            if self.include_dev:
                print('::: Dev scores (lemmas) :::')
                pred_lemmas = self.preprocessor.inverse_transform_lemmas(
                    predictions=dev_preds[self.lemma_out_idx])
                score_dict['dev_lemma'] = evaluation.single_label_accuracies(
                    gold=self.dev_lemmas,
                    silver=pred_lemmas,
                    test_tokens=self.dev_tokens,
                    known_tokens=self.preprocessor.known_tokens)

                if self.postcorrect:
                    print('::: Dev scores (lemmas) -> postcorrected :::')
                    for i in range(len(pred_lemmas)):
                        if pred_lemmas[i] not in self.known_lemmas:
                            pred_lemmas[i] = min(self.known_lemmas,
                                                 key=lambda x: editdistance.
                                                 eval(x, pred_lemmas[i]))
                    score_dict[
                        'dev_lemma_postcorrect'] = evaluation.single_label_accuracies(
                            gold=self.dev_lemmas,
                            silver=pred_lemmas,
                            test_tokens=self.dev_tokens,
                            known_tokens=self.preprocessor.known_tokens)

        if self.include_pos:
            print('::: Train scores (pos) :::')
            pred_pos = self.preprocessor.inverse_transform_pos(
                predictions=train_preds[self.pos_out_idx])
            score_dict['train_pos'] = evaluation.single_label_accuracies(
                gold=self.train_pos,
                silver=pred_pos,
                test_tokens=self.train_tokens,
                known_tokens=self.preprocessor.known_tokens)
            if self.include_dev:
                print('::: Dev scores (pos) :::')
                pred_pos = self.preprocessor.inverse_transform_pos(
                    predictions=dev_preds[self.pos_out_idx])
                score_dict['dev_pos'] = evaluation.single_label_accuracies(
                    gold=self.dev_pos,
                    silver=pred_pos,
                    test_tokens=self.dev_tokens,
                    known_tokens=self.preprocessor.known_tokens)

        if self.include_morph:
            print('::: Train scores (morph) :::')
            pred_morph = self.preprocessor.inverse_transform_morph(
                predictions=train_preds[self.morph_out_idx])
            if self.include_morph == 'label':
                score_dict['train_morph'] = evaluation.single_label_accuracies(
                    gold=self.train_morph,
                    silver=pred_morph,
                    test_tokens=self.train_tokens,
                    known_tokens=self.preprocessor.known_tokens)
            elif self.include_morph == 'multilabel':
                score_dict['train_morph'] = evaluation.multilabel_accuracies(
                    gold=self.train_morph,
                    silver=pred_morph,
                    test_tokens=self.train_tokens,
                    known_tokens=self.preprocessor.known_tokens)

            if self.include_dev:
                print('::: Dev scores (morph) :::')
                pred_morph = self.preprocessor.inverse_transform_morph(
                    predictions=dev_preds[self.morph_out_idx])
                if self.include_morph == 'label':
                    score_dict[
                        'dev_morph'] = evaluation.single_label_accuracies(
                            gold=self.train_morph,
                            silver=pred_morph,
                            test_tokens=self.dev_tokens,
                            known_tokens=self.preprocessor.known_tokens)
                elif self.include_morph == 'multilabel':
                    score_dict['dev_morph'] = evaluation.multilabel_accuracies(
                        gold=self.train_morph,
                        silver=pred_morph,
                        test_tokens=self.dev_tokens,
                        known_tokens=self.preprocessor.known_tokens)

        if autosave:
            self.save()

        return score_dict
Example #4
0
    def test(self, multilabel_threshold=0.5):
        if not self.include_test:
            raise ValueError(
                'Please do not call .test() if no test data is available.')

        score_dict = {}

        # get test predictions:
        test_in = {}
        if self.include_token:
            test_in['focus_in'] = self.test_X_focus
        if self.include_context:
            test_in['context_in'] = self.test_contexts

        test_preds = self.model.predict(test_in, batch_size=self.batch_size)

        if isinstance(test_preds, np.ndarray):
            test_preds = [test_preds]

        if self.include_lemma:
            print('::: Test scores (lemmas) :::')

            pred_lemmas = self.preprocessor.inverse_transform_lemmas(
                predictions=test_preds[self.lemma_out_idx])
            if self.postcorrect:
                for i in range(len(pred_lemmas)):
                    if pred_lemmas[i] not in self.known_lemmas:
                        pred_lemmas[i] = min(
                            self.known_lemmas,
                            key=lambda x: editdistance.eval(x, pred_lemmas[i]))
            score_dict['test_lemma'] = evaluation.single_label_accuracies(
                gold=self.test_lemmas,
                silver=pred_lemmas,
                test_tokens=self.test_tokens,
                known_tokens=self.preprocessor.known_tokens)

        if self.include_pos:
            print('::: Test scores (pos) :::')
            pred_pos = self.preprocessor.inverse_transform_pos(
                predictions=test_preds[self.pos_out_idx])
            score_dict['test_pos'] = evaluation.single_label_accuracies(
                gold=self.test_pos,
                silver=pred_pos,
                test_tokens=self.test_tokens,
                known_tokens=self.preprocessor.known_tokens)

        if self.include_morph:
            print('::: Test scores (morph) :::')
            pred_morph = self.preprocessor.inverse_transform_morph(
                predictions=test_preds[self.morph_out_idx],
                threshold=multilabel_threshold)
            if self.include_morph == 'label':
                score_dict['test_morph'] = evaluation.single_label_accuracies(
                    gold=self.test_morph,
                    silver=pred_morph,
                    test_tokens=self.test_tokens,
                    known_tokens=self.preprocessor.known_tokens)
            elif self.include_morph == 'multilabel':
                score_dict['test_morph'] = evaluation.multilabel_accuracies(
                    gold=self.test_morph,
                    silver=pred_morph,
                    test_tokens=self.test_tokens,
                    known_tokens=self.preprocessor.known_tokens)
        return score_dict