Example #1
0
def collect_ground_truth(data_gen, params):
    data_in, data_out = data_gen.get_data_sizes()
    gt = collect_test_labels(data_gen, data_out, params['mode'], params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    return sed_gt, doa_gt
Example #2
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'], params['weakness'],
        int(params['cnn_3d']), job_id
    )
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['split'], db=params['db'], nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only']
    )

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['split'], db=params['db'], nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'], shuffle=False
    )

    data_in, data_out = data_gen_train.get_data_sizes()
    print(
        'FEATURES:\n'
        '\tdata_in: {}\n'
        '\tdata_out: {}\n'.format(
            data_in, data_out
        )
    )

    gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print(
        'MODEL:\n'
        '\tdropout_rate: {}\n'
        '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
        '\trnn_size: {}, fnn_size: {}\n'.format(
            params['dropout_rate'],
            params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
            params['rnn_size'], params['fnn_size']
        )
    )

    model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'], weights=params['loss_weights'], loader=False, loader2=False) # Change loader to True to enable transfer learning, Change loader2 to True to enable transfer learning with different labels
    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))
    nb_epoch = 2 if params['quick_test'] else params['nb_epochs']
    for epoch_cnt in range(nb_epoch):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=2 if params['quick_test'] else data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            epochs=1,
            verbose=0
        )
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=2 if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            verbose=2
        )
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            epoch_metric_loss[epoch_cnt] = np.mean([
                sed_loss[epoch_cnt, 0],
                1-sed_loss[epoch_cnt, 1],
                2*np.arcsin(doa_loss[epoch_cnt, 1]/2.0)/np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))]
            )
        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, epoch_metric_loss)

        patience_cnt += 1
        if epoch_metric_loss[epoch_cnt] < best_metric:
            best_metric = epoch_metric_loss[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            model.save('{}_model.h5'.format(unique_name))
            patience_cnt = 0

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'error_metric: %.2f, best_error_metric: %.2f, best_epoch : %d' %
            (
                epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                epoch_metric_loss[epoch_cnt], best_metric, best_epoch
            )
        )
        if patience_cnt > params['patience']:
            break

    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(best_epoch, best_metric))
    print('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
        doa_loss[best_epoch, 1], doa_loss[best_epoch, 2], doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(sed_loss[best_epoch, 1], sed_loss[best_epoch, 0]))
    print('unique_name: {} '.format(unique_name))
Example #3
0
def main(args):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """

    # use parameter set defined by user
    task_id = args.params
    params = parameter.get_params(task_id)

    job_id = args.model_name

    model_dir = 'models/' + args.author + '/' if args.author != "" else 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'],
        params['weakness'], int(params['cnn_3d']), job_id)

    model_name = unique_name

    epoch_manager = JSON_Manager(args.author, unique_name)
    logdir = "logs/" + args.author + "/" + unique_name

    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    session = tf.InteractiveSession()

    file_writer = tf.summary.FileWriter(logdir, session.graph)

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='train',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'])

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='test',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'],
        shuffle=False)

    data_in, data_out = data_gen_train.get_data_sizes()
    print('FEATURES:\n'
          '\tdata_in: {}\n'
          '\tdata_out: {}\n'.format(data_in, data_out))

    gt = collect_test_labels(data_gen_test, data_out, params['mode'],
                             params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print('MODEL:\n'
          '\tdropout_rate: {}\n'
          '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
          '\trnn_size: {}, fnn_size: {}\n'.format(
              params['dropout_rate'], params['nb_cnn3d_filt']
              if params['cnn_3d'] else params['nb_cnn2d_filt'],
              params['pool_size'], params['rnn_size'], params['fnn_size']))

    model = keras_model.get_model(data_in=data_in,
                                  data_out=data_out,
                                  dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'],
                                  pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'],
                                  fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'],
                                  weights=params['loss_weights'])

    initial = epoch_manager.get_epoch()
    if initial != 0:
        print(f"Resume training from epoch {initial}")
        print("Loading already trained model...")
        # In order to load custom layers we need to link the references to the custom objects
        model = load_model(os.path.join(model_dir, model_name + "_model.h5"),
                           custom_objects={
                               'QuaternionConv2D': QuaternionConv2D,
                               'QuaternionGRU': QuaternionGRU,
                               'QuaternionDense': QuaternionDense
                           })

    best_metric = epoch_manager.get_best_metric()
    best_std = epoch_manager.get_best_std()
    conf_mat = None
    best_conf_mat = epoch_manager.get_best_conf_mat()
    best_epoch = epoch_manager.get_best_epoch()
    patience_cnt = epoch_manager.get_patience_cnt()
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    std_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    seld_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))

    time_hold = tf.placeholder(tf.float32, shape=None, name='time_summary')
    time_summ = tf.summary.scalar('time', time_hold)

    tr_loss_hold = tf.placeholder(tf.float32,
                                  shape=None,
                                  name='tr_loss_summary')
    tr_loss_summ = tf.summary.scalar('tr_loss', tr_loss_hold)

    val_loss_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='val_loss_summary')
    val_loss_summ = tf.summary.scalar('val_loss', val_loss_hold)

    f1_hold = tf.placeholder(tf.float32, shape=None, name='f1_summary')
    f1_summ = tf.summary.scalar('F1_overall', f1_hold)

    er_hold = tf.placeholder(tf.float32, shape=None, name='er_summary')
    er_summ = tf.summary.scalar('ER_overall', er_hold)

    doa_error_gt_hold = tf.placeholder(tf.float32,
                                       shape=None,
                                       name='doa_error_gt_summary')
    doa_error_gt_summ = tf.summary.scalar('doa_error_gt', doa_error_gt_hold)

    doa_error_pred_hold = tf.placeholder(tf.float32,
                                         shape=None,
                                         name='doa_error_pred_summary')
    doa_error_pred_summ = tf.summary.scalar('doa_error_pred',
                                            doa_error_pred_hold)

    good_pks_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='good_pks_summary')
    good_pks_summ = tf.summary.scalar('good_pks_ratio', good_pks_hold)

    sed_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='sed_score_summary')
    sed_score_summ = tf.summary.scalar('sed_score', sed_score_hold)

    doa_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='doa_score_summary')
    doa_score_summ = tf.summary.scalar('doa_score', doa_score_hold)

    seld_score_hold = tf.placeholder(tf.float32,
                                     shape=None,
                                     name='seld_score_summary')
    seld_score_summ = tf.summary.scalar('seld_score', seld_score_hold)

    std_score_hold = tf.placeholder(tf.float32,
                                    shape=None,
                                    name='std_score_summary')
    std_score_summ = tf.summary.scalar('std_score', std_score_hold)

    best_error_metric_hold = tf.placeholder(tf.float32,
                                            shape=None,
                                            name='best_error_metric_summary')
    best_error_metric_summ = tf.summary.scalar('best_error_metric',
                                               best_error_metric_hold)

    best_epoch_hold = tf.placeholder(tf.float32,
                                     shape=None,
                                     name='best_epoch_summary')
    best_epoch_summ = tf.summary.scalar('best_epoch', best_epoch_hold)

    best_std_hold = tf.placeholder(tf.float32,
                                   shape=None,
                                   name='best_std_summary')
    best_std_summ = tf.summary.scalar('best_std', best_std_hold)

    merged = tf.summary.merge_all()

    for epoch_cnt in range(initial, params['nb_epochs']):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=5 if params['quick_test'] else
            data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            epochs=1,
            verbose=1)
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            verbose=2)
        print("pred:", pred[1].shape)
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(
                        doa_pred, doa_gt, sed_pred, sed_gt)
            else:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(
                        doa_pred, doa_gt, sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean(
                [sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([
                2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))
            ])
            seld_score[epoch_cnt] = np.mean(
                [sed_score[epoch_cnt], doa_score[epoch_cnt]])

            # standard deviation
            std_score[epoch_cnt] = np.std(
                [sed_score[epoch_cnt], doa_score[epoch_cnt]])

        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss,
                       sed_score, doa_score)

        patience_cnt += 1
        epoch_manager.increase_patience_cnt()

        model.save('{}_model.h5'.format(unique_name))

        if seld_score[epoch_cnt] < best_metric:
            best_metric = seld_score[epoch_cnt]
            epoch_manager.set_best_metric(best_metric)

            best_std = std_score[epoch_cnt]
            epoch_manager.set_best_std(best_std)

            best_conf_mat = conf_mat
            epoch_manager.set_best_conf_mat(conf_mat)

            best_epoch = epoch_cnt
            epoch_manager.set_best_epoch(best_epoch)

            model.save('{}_best_model.h5'.format(unique_name))
            patience_cnt = 0
            epoch_manager.reset_patience_cnt()

        if patience_cnt > params['patience']:
            print(
                f"\n----  PATIENCE TRIGGERED AFTER {epoch_cnt} EPOCHS  ----\n")
            break

        summary = session.run(merged,
                              feed_dict={
                                  time_hold:
                                  time.time() - start,
                                  tr_loss_hold:
                                  tr_loss[epoch_cnt],
                                  val_loss_hold:
                                  val_loss[epoch_cnt],
                                  f1_hold:
                                  sed_loss[epoch_cnt, 1],
                                  er_hold:
                                  sed_loss[epoch_cnt, 0],
                                  doa_error_gt_hold:
                                  doa_loss[epoch_cnt, 1],
                                  doa_error_pred_hold:
                                  doa_loss[epoch_cnt, 2],
                                  good_pks_hold:
                                  doa_loss[epoch_cnt, 5] /
                                  float(sed_gt.shape[0]),
                                  sed_score_hold:
                                  sed_score[epoch_cnt],
                                  doa_score_hold:
                                  doa_score[epoch_cnt],
                                  seld_score_hold:
                                  seld_score[epoch_cnt],
                                  std_score_hold:
                                  std_score[epoch_cnt],
                                  best_error_metric_hold:
                                  best_metric,
                                  best_epoch_hold:
                                  best_epoch,
                                  best_std_hold:
                                  best_std
                              })
        file_writer.add_summary(summary, epoch_cnt)

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'sed_score: %.2f, doa_score: %.2f, best_error_metric: %.2f, best_epoch : %d, best_std: %.2f'
            % (epoch_cnt, time.time() - start, tr_loss[epoch_cnt],
               val_loss[epoch_cnt], sed_loss[epoch_cnt, 1],
               sed_loss[epoch_cnt, 0], doa_loss[epoch_cnt, 1],
               doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] /
               float(sed_gt.shape[0]), sed_score[epoch_cnt],
               doa_score[epoch_cnt], best_metric, best_epoch, best_std))
        epoch_manager.increase_epoch()
    lower_confidence, upper_confidence = evaluation_metrics.compute_confidence_interval(
        best_metric, best_std, params['nb_epochs'],
        confid_coeff=1.96)  # 1.96 for a 95% CI

    print("\n----  FINISHED TRAINING  ----\n")

    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(
        best_epoch, best_metric))
    print(
        'DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.
        format(doa_loss[best_epoch, 1], doa_loss[best_epoch, 2],
               doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(
        sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('Confidence Interval: lower_interval: {}, upper_inteval: {}'.format(
        lower_confidence, upper_confidence))
    print('unique_name: {} '.format(unique_name))
        label_sed = label[0].cuda()
        label_doa = label[1].cuda()
        for i_train in range(100):
            X = input_.clone()
            X = rotationLayer(X)
            y_sed, y_doa = net(X, update=False)
            y_doa = rotationLayer(y_doa)
            optimizer.zero_grad()
            loss_sed = criterion_sed(y_sed, label_sed)
            loss_doa = unit_vec_distance(y_doa, label_doa, label_sed)
            # loss = -loss_sed - loss_doa
            # loss = - loss_doa
            loss = -loss_sed

            if i == 0:
                sed_est = reshape_3Dto2D(
                    torch.sigmoid(y_sed).cpu().detach().numpy())
                if highest_loss < loss_sed.item() + loss_doa.item():
                    highest_loss = loss_sed.item() + loss_doa.item()
                    ax_t = np.arange(sed_est.shape[0]) * 0.02
                    for j, v in enumerate(sed_est.T):
                        plt.plot(ax_t, v + j)
                    plt.xlabel('Time [sec]')
                    plt.ylabel('On / Off')
                    plt.tight_layout()
                    plt.savefig(
                        os.path.join(dirpath,
                                     'sed_est_' + str(i_train + 1) + '.png'))
                    plt.close()
                if i_train == 0:
                    sed_gt = reshape_3Dto2D(label[0].numpy())
                    for j, v in enumerate(sed_gt.T):
Example #5
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print(
            '\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
            'You can use any number or string for this.')
        print(
            '\t\t<task-id> is used to choose the user-defined parameter set from parameter.py'
        )
        print('Using default inputs for now')
        print(
            '-------------------------------------------------------------------------------------------------------'
        )
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'],
        params['weakness'], int(params['cnn_3d']), job_id)
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='train',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'])

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='test',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'],
        shuffle=False)

    data_in, data_out = data_gen_train.get_data_sizes()
    print('FEATURES:\n'
          '\tdata_in: {}\n'
          '\tdata_out: {}\n'.format(data_in, data_out))

    gt = collect_test_labels(data_gen_test, data_out, params['mode'],
                             params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print('MODEL:\n'
          '\tdropout_rate: {}\n'
          '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
          '\trnn_size: {}, fnn_size: {}\n'.format(
              params['dropout_rate'], params['nb_cnn3d_filt']
              if params['cnn_3d'] else params['nb_cnn2d_filt'],
              params['pool_size'], params['rnn_size'], params['fnn_size']))

    # TPU CODE FOR GOOGLE COLABORATORY
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
        tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
    tf.config.experimental_connect_to_cluster(resolver)
    # This is the TPU initialization code that has to be at the beginning.
    tf.tpu.experimental.initialize_tpu_system(resolver)
    print("All devices: ", tf.config.list_logical_devices('TPU'))

    strategy = tf.distribute.experimental.TPUStrategy(resolver)

    with strategy.scope():
        # Load or create model
        model = utils.load_model(unique_name)
        if model is None:
            model = keras_model.get_model(
                data_in=data_in,
                data_out=data_out,
                dropout_rate=params['dropout_rate'],
                nb_cnn2d_filt=params['nb_cnn2d_filt'],
                pool_size=params['pool_size'],
                rnn_size=params['rnn_size'],
                fnn_size=params['fnn_size'],
                classification_mode=params['mode'],
                weights=params['loss_weights'])
        model.summary()

    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))
    for epoch_cnt in range(params['nb_epochs']):
        start = time.time()
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=5 if params['quick_test'] else
            data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            epochs=1,
            verbose=1)
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=5 if params['quick_test'] else
            data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            verbose=2)
        print("pred:", pred[1].shape)
        if params['mode'] == 'regr':
            sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
                sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(
                        doa_pred, doa_gt, sed_pred, sed_gt)
            else:
                doa_loss[
                    epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(
                        doa_pred, doa_gt, sed_pred, sed_gt)


#            epoch_metric_loss[epoch_cnt] = np.mean([
#                sed_loss[epoch_cnt, 0],
#                1-sed_loss[epoch_cnt, 1],
#                2*np.arcsin(doa_loss[epoch_cnt, 1]/2.0)/np.pi,
#                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))]
#            )
            sed_score[epoch_cnt] = np.mean(
                [sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([
                2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))
            ])

        #plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, epoch_metric_loss)
        plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss,
                       sed_score, doa_score)

        patience_cnt += 1
        #        if epoch_metric_loss[epoch_cnt] < best_metric:
        #            best_metric = epoch_metric_loss[epoch_cnt]
        #            best_conf_mat = conf_mat
        #            best_epoch = epoch_cnt
        #            model.save('{}_model.h5'.format(unique_name))
        #            patience_cnt = 0
        if sed_score[epoch_cnt] < best_metric:
            best_metric = sed_score[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            model.save('{}_model.h5'.format(unique_name))
            patience_cnt = 0

        print(
            'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
            'F1_overall: %.2f, ER_overall: %.2f, '
            'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
            'sed_score: %.2f, doa_score: %.2f, best_error_metric: %.2f, best_epoch : %d'
            % (epoch_cnt, time.time() - start, tr_loss[epoch_cnt],
               val_loss[epoch_cnt], sed_loss[epoch_cnt, 1],
               sed_loss[epoch_cnt, 0], doa_loss[epoch_cnt, 1],
               doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] /
               float(sed_gt.shape[0]), sed_score[epoch_cnt],
               doa_score[epoch_cnt], best_metric, best_epoch))

    #plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, sed_score, doa_score, epoch_cnt)
    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(
        best_epoch, best_metric))
    print(
        'DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.
        format(doa_loss[best_epoch, 1], doa_loss[best_epoch, 2],
               doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(
        sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('unique_name: {} '.format(unique_name))
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_train{}_validation{}_seq{}'.format(params['dataset'], params['train_split'], params['val_split'], params['sequence_length'])
    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    # Cycling over overlaps
    for ov in range(1, params['overlap']+1):

        data_gen_test = cls_data_generator.DataGenerator(
            dataset=params['dataset'], ov=params['overlap'], ov_num=ov, split=params['test_split'], db=params['db'], nfft=params['nfft'],
            batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
            weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
            azi_only=params['azi_only'], shuffle=False
        )

        data_in, data_out = data_gen_test.get_data_sizes()
        n_classes = data_out[0][2]

        print(
            'FEATURES:\n'
            '\tdata_in: {}\n'
            '\tdata_out: {}\n'.format(
                data_in, data_out
            )
        )

        gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
        sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
        doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

        print("#### Saving DOA and SED GT Values ####")
        f = open("models/doa_gt.txt", "w+")
        for elem in doa_gt:
          f.write(str(list(elem)) + "\n")
        f.close()

        f = open("models/sed_gt.txt", "w+")
        for elem in sed_gt:
          f.write(str(elem)+"\n")
        f.close()
        print("######################################")

        print(
            'MODEL:\n'
            '\tdropout_rate: {}\n'
            '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
            '\trnn_size: {}, fnn_size: {}\n'.format(
                params['dropout_rate'],
                params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
                params['rnn_size'], params['fnn_size']
            )
        )

        model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                        nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                        rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                        classification_mode=params['mode'], weights=params['loss_weights'], summary=False)

        if(os.path.exists('{}_model.ckpt'.format(unique_name))):
            print("Model found!")
            model.load_weights('{}_model.ckpt'.format(unique_name))
            for i in range(10):
                print("###")

        sed_score = np.zeros(params['nb_epochs'])
        doa_score = np.zeros(params['nb_epochs'])
        seld_score = np.zeros(params['nb_epochs'])
        tr_loss = np.zeros(params['nb_epochs'])
        val_loss = np.zeros(params['nb_epochs'])
        doa_loss = np.zeros((params['nb_epochs'], 6))
        sed_loss = np.zeros((params['nb_epochs'], 2))

        epoch_cnt = 0
        start = time.time()

        print("#### Prediction on validation split ####")
        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=params['quick_test_steps'] if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            verbose=1,
        )
        print("##########################")
        #print("pred:", pred[1].shape)

        if params['mode'] == 'regr':
            sed_pred = np.array(evaluation_metrics.reshape_3Dto2D(pred[0])) > .5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            print("#### Saving DOA and SED Pred Values ####")
            f = open("models/doa_pred.txt", "w+")
            for elem in doa_pred:
              f.write(str(list(elem)) + "\n")
            f.close()

            f = open("models/sed_pred.txt", "w+")
            for elem in sed_pred:
              f.write(str(elem)+"\n")
            f.close()
            print("########################################")

            # Old version of confidence intervals
            '''
            # Computing confidence intervals
            sed_err = sed_gt - sed_pred
            [sed_conf_low, sed_conf_up, sed_median] = compute_confidence(sed_err)
            # print("Condidence Interval for SED error is [" + str(sed_conf_low) + ", " + str(sed_conf_up) + "]")
            print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))
            # print("\tMedian is " + str(sed_median))
            print("\tMedian is %f" % (sed_median))
            # print("\tDisplacement: +/- " + str(sed_conf_up - sed_median))
            print("\tDisplacement: +/- %f" % (sed_conf_up - sed_median))
            doa_err = doa_gt - doa_pred
            [doa_conf_low, doa_conf_up, doa_median] = compute_confidence(doa_err)
            # print("Condidence Interval for DOA is [" + str(doa_conf_low) + ", " + str(doa_conf_up) + "]")
            print("Confidence Interval for DOA is [ %f, %f ]" % (doa_conf_low, doa_conf_up))
            # print("Median is " + str(doa_median))
            print("\tMedian is %f" % (doa_median))
            # print("Displacement: +/- " + str(doa_conf_up - doa_median))
            print("\tDisplacement: +/- %f" % (doa_conf_up - doa_median))
            # ------------------------------
            '''

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt, data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean([sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                                            1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))])
            seld_score[epoch_cnt] = (sed_score[epoch_cnt] + doa_score[epoch_cnt]) / 2

            if os.path.isdir('./models'):
                plot.imshow(conf_mat, cmap='binary', interpolation='None')
                plot.savefig('models/confusion_matrix.jpg')

            # New confidence computation, differing doa and sed errors
            sed_err = sed_loss[epoch_cnt, 0]
            [sed_conf_low, sed_conf_up] = compute_confidence(sed_err, sed_pred.shape[0])
            print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))

            doa_err = doa_gt - doa_pred
            [x_err, y_err, z_err] = compute_doa_confidence(doa_err, n_classes)


            print('epoch_cnt: %d, time: %.2fs, tr_loss: %.4f, val_loss: %.4f, '
                'F1_overall: %.2f, ER_overall: %.2f, '
                'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
                'sed_score: %.4f, doa_score: %.4f, seld_score: %.4f' %
                (
                    epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                    sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                    doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                    sed_score[epoch_cnt], doa_score[epoch_cnt], seld_score[epoch_cnt]
                )
            )

        simple_plotter.plot_3d("models/doa_gt.txt", "models/doa_pred.txt", 0, 11, 200)
        simple_plotter.plot_confidence(x_err, y_err, z_err, "ov"+str(ov))
Example #7
0
def main(argv):
    """
    Main wrapper for training sound event localization and detection network.

    :param argv: expects two optional inputs.
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py.
                                (default) uses default parameters
    """
    if len(argv) != 3:
        print('\n\n')
        print('-------------------------------------------------------------------------------------------------------')
        print('The code expected two inputs')
        print('\t>> python seld.py <job-id> <task-id>')
        print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). '
              'You can use any number or string for this.')
        print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py')
        print('Using default inputs for now')
        print('-------------------------------------------------------------------------------------------------------')
        print('\n\n')
    # use parameter set defined by user
    task_id = '1' if len(argv) < 3 else argv[-1]
    params = parameter.get_params(task_id)

    job_id = 1 if len(argv) < 2 else argv[1]

    model_dir = 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_train{}_validation{}_seq{}'.format(params['dataset'], params['train_split'], params['val_split'],
                                                         params['sequence_length'])

    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_train = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['train_split'], db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='train', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only']
    )

    data_gen_test = cls_data_generator.DataGenerator(
        dataset=params['dataset'], ov=params['overlap'], split=params['val_split'], db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'],
        weakness=params['weakness'], datagen_mode='validation', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'], shuffle=False
    )

    data_in, data_out = data_gen_train.get_data_sizes()
    #n_classes = data_out[0][2]

    print(
        'FEATURES:\n'
        '\tdata_in: {}\n'
        '\tdata_out: {}\n'.format(
            data_in, data_out
        )
    )

    gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print(
        'MODEL:\n'
        '\tdropout_rate: {}\n'
        '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
        '\trnn_size: {}, fnn_size: {}\n'.format(
            params['dropout_rate'],
            params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'],
            params['rnn_size'], params['fnn_size']
        )
    )

    model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                  nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                  rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                  classification_mode=params['mode'], weights=params['loss_weights'], summary=True)

    if (os.path.exists('{}_model.ckpt'.format(unique_name))):
        print("Model found!")
        model.load_weights('{}_model.ckpt'.format(unique_name))
        for i in range(10):
            print("###")

    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    seld_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))

    for epoch_cnt in range(params['nb_epochs']):
        start = time.time()

        print("##### Training the model #####")
        hist = model.fit_generator(
            generator=data_gen_train.generate(),
            steps_per_epoch=params['quick_test_steps'] if params[
                'quick_test'] else data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_test.generate(),
            validation_steps=params['quick_test_steps'] if params[
                'quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            epochs=1,
            verbose=1
        )
        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]
        print("##########################")

        # Save, get model and re-load weights for the predict_generator bug
        print("##### Saving weights #####")
        model.save_weights('{}_model.ckpt'.format(unique_name))

        model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'],
                                      nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'],
                                      rnn_size=params['rnn_size'], fnn_size=params['fnn_size'],
                                      classification_mode=params['mode'], weights=params['loss_weights'], summary=False)
        model.load_weights('{}_model.ckpt'.format(unique_name))
        print("##########################")

        print("#### Prediction on validation split ####")
        pred = model.predict_generator(
            generator=data_gen_test.generate(),
            steps=params['quick_test_steps'] if params['quick_test'] else data_gen_test.get_total_batches_in_data(),
            use_multiprocessing=False,
            workers=1,
            verbose=1
        )
        print("########################################")
        # print("pred:",pred[1].shape)

        if params['mode'] == 'regr':
            sed_pred = np.array(evaluation_metrics.reshape_3Dto2D(pred[0])) > .5
            doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])

            # Old confidence intervals
            '''
            sed_err = sed_gt - sed_pred
            [sed_conf_low, sed_conf_up, sed_median] = compute_confidence(sed_err)
            # print("Condidence Interval for SED error is [" + str(sed_conf_low) + ", " + str(sed_conf_up) + "]")
            print("Confidence Interval for SED error is [ %.5f, %.5f ]" % (sed_conf_low, sed_conf_up))
            # print("\tMedian is " + str(sed_median))
            print("\tMedian is %.5f" % (sed_median))
            # print("\tDisplacement: +/- " + str(sed_conf_up - sed_median))
            print("\tDisplacement: +/- %.5f" % (sed_conf_up - sed_median))
            doa_err = doa_gt - doa_pred
            [doa_conf_low, doa_conf_up, doa_median] = compute_confidence(doa_err)
            # print("Condidence Interval for DOA is [" + str(doa_conf_low) + ", " + str(doa_conf_up) + "]")
            print("Confidence Interval for DOA is [ %.5f, %.5f ]" % (doa_conf_low, doa_conf_up))
            # print("Median is " + str(doa_median))
            print("\tMedian is %.5f" % (doa_median))
            # print("Displacement: +/- " + str(doa_conf_up - doa_median))
            print("\tDisplacement: +/- %.5f" % (doa_conf_up - doa_median))
            '''

            sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt,
                                                                           data_gen_test.nb_frames_1s())
            if params['azi_only']:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred, doa_gt,
                                                                                                 sed_pred, sed_gt)
            else:
                doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred, doa_gt,
                                                                                                  sed_pred, sed_gt)

            sed_score[epoch_cnt] = np.mean([sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
            doa_score[epoch_cnt] = np.mean([2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                                            1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))])
            seld_score[epoch_cnt] = (sed_score[epoch_cnt] + doa_score[epoch_cnt]) / 2

            if os.path.isdir('./models'):
                plot.imshow(conf_mat, cmap='binary', interpolation='None')
                plot.savefig('models/confusion_matrix.jpg')

        # New confidence computation, differing doa and sed errors
        sed_err = sed_loss[epoch_cnt, 0]
        [sed_conf_low, sed_conf_up] = compute_confidence(sed_err, sed_pred.shape[0])
        print("Confidence Interval for SED error is [ %f, %f ]" % (sed_conf_low, sed_conf_up))

        #doa_err = doa_gt - doa_pred
        #[x_err, y_err, z_err] = compute_doa_confidence(doa_err, n_classes)

        plot_array = [tr_loss[epoch_cnt],  # 0
                      val_loss[epoch_cnt],  # 1
                      sed_loss[epoch_cnt][0],  # 2    er
                      sed_loss[epoch_cnt][1],  # 3    f1
                      doa_loss[epoch_cnt][0],  # 4    avg_accuracy
                      doa_loss[epoch_cnt][1],  # 5    doa_loss_gt
                      doa_loss[epoch_cnt][2],  # 6    doa_loss_pred
                      doa_loss[epoch_cnt][3],  # 7    doa_loss_gt_cnt
                      doa_loss[epoch_cnt][4],  # 8    doa_loss_pred_cnt
                      doa_loss[epoch_cnt][5],  # 9    good_frame_cnt
                      sed_score[epoch_cnt],  # 10
                      doa_score[epoch_cnt],
                      seld_score[epoch_cnt],
                      #doa_conf_low, doa_median,
                      #doa_conf_up, sed_conf_low,
                      #sed_median, sed_conf_up]
                      sed_conf_low, sed_conf_up]

        patience_cnt += 1

        # model.save_weights('{}_model.ckpt'.format(unique_name))
        simple_plotter.save_array_to_csv("{}_plot.csv".format(unique_name), plot_array)
        #simple_plotter.plot_confidence(x_err, y_err, z_err, "ov")
        print("##### Model and metrics saved! #####")

        if seld_score[epoch_cnt] < best_metric:
            best_metric = seld_score[epoch_cnt]
            best_conf_mat = conf_mat
            best_epoch = epoch_cnt
            # Now we save the model at every iteration
            model.save_weights('{}_BEST_model.ckpt'.format(unique_name))
            patience_cnt = 0

        print('epoch_cnt: %d, time: %.2fs, tr_loss: %.4f, val_loss: %.4f, '
              'F1_overall: %.2f, ER_overall: %.2f, '
              'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
              'sed_score: %.4f, doa_score: %.4f, seld_score: %.4f, best_error_metric: %.2f, best_epoch : %d' %
              (
                  epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                  sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                  doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                  sed_score[epoch_cnt], doa_score[epoch_cnt], seld_score[epoch_cnt], best_metric, best_epoch
              )
              )

    # plot_functions(unique_name, tr_loss, val_loss, sed_loss, doa_loss, sed_score, doa_score, epoch_cnt)
    print('best_conf_mat : {}'.format(best_conf_mat))
    print('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
    print('saved model for the best_epoch: {} with best_metric: {},  '.format(best_epoch, best_metric))
    print('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
        doa_loss[best_epoch, 1], doa_loss[best_epoch, 2], doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
    print('SED Metrics: ER_overall: {}, F1_overall: {}'.format(sed_loss[best_epoch, 0], sed_loss[best_epoch, 1]))
    print('unique_name: {} '.format(unique_name))
Example #8
0
def evaluate(model, data_gen_test, params, log_dir=".", unique_name="unique_name"):
    logger.info("EVALUATE function called")
    sed_gt, doa_gt = collect_ground_truth(data_gen_test, params)

    predict_single_batch(model, data_gen_test)

    dnn_output = model.predict(
        x=data_gen_test.generate(),
        steps=data_gen_test.get_total_batches_in_data(),
        verbose=2
    )

    sed_pred = dnn_output[0] > 0.5
    doa_pred = dnn_output[1]
    sed_pred = evaluation_metrics.reshape_3Dto2D(sed_pred)
    doa_pred = evaluation_metrics.reshape_3Dto2D(doa_pred)

    num_classes = sed_pred.shape[-1]
    num_dims_xyz = 3

    if doa_pred.shape[-1] > num_classes * num_dims_xyz:  # true means we are using masked mse
        sed_mask = np.repeat(sed_pred, 3, -1)
        doa_pred = doa_pred[..., num_classes:] * sed_mask
        doa_gt = doa_gt[..., num_classes:] * sed_mask    

    sed_loss = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt,
                                                     data_gen_test.nb_frames_1s())
    if params['azi_only']:
        doa_loss, conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred,
                                                                           doa_gt,
                                                                           sed_pred,
                                                                           sed_gt)
    else:
        doa_loss, conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred,
                                                                            doa_gt,
                                                                            sed_pred,
                                                                            sed_gt)

    epoch_metric_loss = np.mean([
        sed_loss[0],
        1 - sed_loss[1],
        2 * np.arcsin(doa_loss[1] / 2.0) / np.pi,
        1 - (doa_loss[5] / float(doa_gt.shape[0]))]
    )

    logger.info(
        'F1_overall: %.2f, ER_overall: %.2f, '
        'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
        'error_metric: %.2f' %
        (
            sed_loss[1], sed_loss[0],
            doa_loss[1], doa_loss[2], doa_loss[5] / float(sed_gt.shape[0]),
            epoch_metric_loss
        )
    )

    logger.info('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
        doa_loss[1], doa_loss[2], doa_loss[5] / float(sed_gt.shape[0])))
    logger.info(
        'SED Metrics: F1_overall: {}, ER_overall: {}'.format(sed_loss[1], sed_loss[0]))

    logger.info('unique_name: {} '.format(unique_name))
Example #9
0
def train(model, data_gen_train, data_gen_val, params, log_dir=".", unique_name="unique_name"):
    logger.info("Train function called")
    sed_gt, doa_gt = collect_ground_truth(data_gen_val, params)

    best_metric = 99999
    conf_mat = None
    best_conf_mat = None
    best_epoch = -1
    patience_cnt = 0
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))
    nb_epoch = params['nb_epochs']
    model_path = os.path.join(log_dir, 'model')

    K.clear_session()

    for epoch_cnt in range(nb_epoch):
        logger.info(f"Iteration {epoch_cnt}/{nb_epoch}")
        start = time.time()
        hist = model.fit(
            x=data_gen_train.generate(),
            steps_per_epoch=data_gen_train.get_total_batches_in_data(),
            validation_data=data_gen_val.generate(),
            validation_steps=data_gen_val.get_total_batches_in_data(),
            epochs=params['epochs_per_iteration'],
            verbose=2,
            # callbacks=[MyCustomCallback]
        )

        tr_loss[epoch_cnt] = hist.history.get('loss')[-1]
        val_loss[epoch_cnt] = hist.history.get('val_loss')[-1]

        if (params['debug_load_single_batch']) and (epoch_cnt % 10 != 0) and (epoch_cnt != nb_epoch - 1):
            plot_functions(os.path.join(log_dir, 'training_curves'), tr_loss, val_loss, sed_loss, doa_loss,
                           epoch_metric_loss)
        else:
            predict_single_batch(model, data_gen_train)

            pred = model.predict(
                x=data_gen_val.generate(),
                steps=data_gen_val.get_total_batches_in_data(),
                verbose=2
            )
            if params['mode'] == 'regr':
                sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5

                doa_pred = pred[1]
                num_classes = sed_pred.shape[-1]
                num_dims_xyz = 3

                if doa_pred.shape[-1] > num_classes * num_dims_xyz:  # true means we are using masked mse
                    doa_pred = doa_pred[..., num_classes:]
                    logger.debug(f"doa_pred.shape {doa_pred.shape}")

                if doa_gt.shape[-1] > num_classes * num_dims_xyz:  # true means we are using masked mse
                    doa_gt = doa_gt[..., num_classes:]
                    logger.debug(f"doa_gt.shape {doa_gt.shape}")

                doa_pred = evaluation_metrics.reshape_3Dto2D(doa_pred)

                sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(sed_pred, sed_gt,
                                                                               data_gen_val.nb_frames_1s())
                if params['azi_only']:
                    doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(doa_pred,
                                                                                                     doa_gt,
                                                                                                     sed_pred,
                                                                                                     sed_gt)
                else:
                    doa_loss[epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(doa_pred,
                                                                                                      doa_gt,
                                                                                                      sed_pred,
                                                                                                      sed_gt)

                epoch_metric_loss[epoch_cnt] = np.mean([
                    sed_loss[epoch_cnt, 0],
                    1 - sed_loss[epoch_cnt, 1],
                    2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
                    1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))]
                )

            plot_functions(os.path.join(log_dir, 'training_curves'), tr_loss, val_loss, sed_loss, doa_loss,
                           epoch_metric_loss)

            patience_cnt += 1
            if (epoch_metric_loss[epoch_cnt] < best_metric):
                best_metric = epoch_metric_loss[epoch_cnt]
                best_conf_mat = conf_mat
                best_epoch = epoch_cnt
                model.save(model_path)
                patience_cnt = 0

            logger.info(
                'epoch_cnt: %d, time: %.2fs, tr_loss: %.2f, val_loss: %.2f, '
                'F1_overall: %.2f, ER_overall: %.2f, '
                'doa_error_gt: %.2f, doa_error_pred: %.2f, good_pks_ratio:%.2f, '
                'error_metric: %.2f, best_error_metric: %.2f, best_epoch : %d' %
                (
                    epoch_cnt, time.time() - start, tr_loss[epoch_cnt], val_loss[epoch_cnt],
                    sed_loss[epoch_cnt, 1], sed_loss[epoch_cnt, 0],
                    doa_loss[epoch_cnt, 1], doa_loss[epoch_cnt, 2], doa_loss[epoch_cnt, 5] / float(sed_gt.shape[0]),
                    epoch_metric_loss[epoch_cnt], best_metric, best_epoch
                )
            )

            if patience_cnt > params['patience']:
                break

        # otherwise RAM use increases after every epoch. But is the optimizer state forgotten?
        K.clear_session()

        if params['debug_load_single_batch'] and hist.history.get('loss')[-1] < 0.01:
            break

    if params['debug_load_single_batch']:
        model.save(model_path)

    else:
        logger.info('best_conf_mat : {}'.format(best_conf_mat))
        logger.info('best_conf_mat_diag : {}'.format(np.diag(best_conf_mat)))
        logger.info('saved model for the best_epoch: {} with best_metric: {},  '.format(best_epoch, best_metric))
        logger.info('DOA Metrics: doa_loss_gt: {}, doa_loss_pred: {}, good_pks_ratio: {}'.format(
            doa_loss[best_epoch, 1], doa_loss[best_epoch, 2], doa_loss[best_epoch, 5] / float(sed_gt.shape[0])))
        logger.info(
            'SED Metrics: F1_overall: {}, ER_overall: {}'.format(sed_loss[best_epoch, 1], sed_loss[best_epoch, 0]))

    np.save(os.path.join(log_dir, 'training-loss'), [tr_loss, val_loss])
    logger.info(f'unique_name: {unique_name}')
    logger.info(f'log_dir: {log_dir}')
Example #10
0
def main(args):
    """
    Main wrapper for training sound event localization and detection network.
    
    :param argv: expects two optional inputs. 
        first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1
        second input: task_id - (optional) To chose the system configuration in parameters.py. 
                                (default) uses default parameters
    """

    # use parameter set defined by user
    task_id = args.params
    params = parameter.get_params(task_id)

    job_id = args.model_name

    model_dir = 'models/' + args.author + '/' if args.author != "" else 'models/'
    utils.create_folder(model_dir)
    unique_name = '{}_ov{}_split{}_{}{}_3d{}_{}'.format(
        params['dataset'], params['overlap'], params['split'], params['mode'],
        params['weakness'], int(params['cnn_3d']), job_id)

    model_name = unique_name

    epoch_manager = JSON_Manager(args.author, unique_name)
    logdir = "logs/" + args.author + "/" + unique_name

    unique_name = os.path.join(model_dir, unique_name)
    print("unique_name: {}\n".format(unique_name))

    data_gen_test = cls_data_generator_seld.DataGenerator(
        dataset=params['dataset'],
        ov=params['overlap'],
        split=params['split'],
        db=params['db'],
        nfft=params['nfft'],
        batch_size=params['batch_size'],
        seq_len=params['sequence_length'],
        classifier_mode=params['mode'],
        weakness=params['weakness'],
        datagen_mode='test',
        cnn3d=params['cnn_3d'],
        xyz_def_zero=params['xyz_def_zero'],
        azi_only=params['azi_only'],
        shuffle=False)

    data_in, data_out = data_gen_test.get_data_sizes()
    print('FEATURES:\n'
          '\tdata_in: {}\n'
          '\tdata_out: {}\n'.format(data_in, data_out))

    gt = collect_test_labels(data_gen_test, data_out, params['mode'],
                             params['quick_test'])
    sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0])
    doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1])

    print('MODEL:\n'
          '\tdropout_rate: {}\n'
          '\tCNN: nb_cnn_filt: {}, pool_size{}\n'
          '\trnn_size: {}, fnn_size: {}\n'.format(
              params['dropout_rate'], params['nb_cnn3d_filt']
              if params['cnn_3d'] else params['nb_cnn2d_filt'],
              params['pool_size'], params['rnn_size'], params['fnn_size']))

    model = load_model(os.path.join(model_dir, model_name + "_best_model.h5"),
                       custom_objects={
                           'QuaternionConv2D': QuaternionConv2D,
                           'QuaternionGRU': QuaternionGRU,
                           'QuaternionDense': QuaternionDense
                       })
    model.summary()
    plot_model(model, to_file=os.path.join(model_dir, 'model.png'))

    best_metric = epoch_manager.get_best_metric()
    conf_mat = None
    best_conf_mat = epoch_manager.get_best_conf_mat()
    best_epoch = epoch_manager.get_best_epoch()
    patience_cnt = epoch_manager.get_patience_cnt()
    epoch_metric_loss = np.zeros(params['nb_epochs'])
    sed_score = np.zeros(params['nb_epochs'])
    std_score = np.zeros(params['nb_epochs'])
    doa_score = np.zeros(params['nb_epochs'])
    seld_score = np.zeros(params['nb_epochs'])
    tr_loss = np.zeros(params['nb_epochs'])
    val_loss = np.zeros(params['nb_epochs'])
    doa_loss = np.zeros((params['nb_epochs'], 6))
    sed_loss = np.zeros((params['nb_epochs'], 2))

    epoch_cnt = 0

    pred = model.predict_generator(
        generator=data_gen_test.generate(),
        steps=data_gen_test.get_total_batches_in_data(),
        use_multiprocessing=False,
        verbose=2)
    print("pred[1]:", pred[1].shape)
    if params['mode'] == 'regr':
        sed_pred = evaluation_metrics.reshape_3Dto2D(pred[0]) > 0.5
        print(f"sed_pred: {sed_pred.shape}")
        doa_pred = evaluation_metrics.reshape_3Dto2D(pred[1])
        print(f"doa_pred: {doa_pred.shape}")
        sed_loss[epoch_cnt, :] = evaluation_metrics.compute_sed_scores(
            sed_pred, sed_gt, data_gen_test.nb_frames_1s())

        if params['azi_only']:
            doa_loss[
                epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xy(
                    doa_pred, doa_gt, sed_pred, sed_gt)
        else:
            doa_loss[
                epoch_cnt, :], conf_mat = evaluation_metrics.compute_doa_scores_regr_xyz(
                    doa_pred, doa_gt, sed_pred, sed_gt)

        sed_score[epoch_cnt] = np.mean(
            [sed_loss[epoch_cnt, 0], 1 - sed_loss[epoch_cnt, 1]])
        print(f"ER: {sed_loss[epoch_cnt, 0]}")
        er = sed_loss[epoch_cnt, 0]

        interval = 1.96 * np.sqrt(((er) * (1 - er)) / sed_pred.shape[0])
        print(f"interval: {interval}")

        doa_score[epoch_cnt] = np.mean([
            2 * np.arcsin(doa_loss[epoch_cnt, 1] / 2.0) / np.pi,
            1 - (doa_loss[epoch_cnt, 5] / float(doa_gt.shape[0]))
        ])
        seld_score[epoch_cnt] = np.mean(
            [sed_score[epoch_cnt], doa_score[epoch_cnt]])

        doa_error = doa_pred - doa_gt

        doa_error = np.reshape(doa_error, newshape=(doa_error.shape[0], 11, 2))
        doa_error = np.absolute(doa_error[:, :, 0])
        print(f"doa_error: {doa_error.shape}")
        doa_error = np.reshape(doa_error,
                               newshape=(doa_error.shape[0] *
                                         doa_error.shape[1]))
        print(f"doa_error: {doa_error.shape}")

        np.save(model_name + "_x", doa_error)

        doa_error = doa_pred - doa_gt

        doa_error = np.reshape(doa_error, newshape=(doa_error.shape[0], 11, 2))
        doa_error = np.absolute(doa_error[:, :, 1])
        print(f"doa_error: {doa_error.shape}")
        doa_error = np.reshape(doa_error,
                               newshape=(doa_error.shape[0] *
                                         doa_error.shape[1]))
        print(f"doa_error: {doa_error.shape}")

        np.save(model_name + "_y", doa_error)

        # standard deviation
        std_score[epoch_cnt] = np.std(
            [sed_score[epoch_cnt], doa_score[epoch_cnt]])

        print(f"{er-interval}   /   {er+interval}")
    #lower_confidence, upper_confidence = evaluation_metrics.compute_confidence_interval(best_metric,best_std, params['nb_epochs'], confid_coeff=1.96) # 1.96 for a 95% CI

    print("\n----  FINISHED  ----\n")