Example #1
0
def test_index_replicated_protocol():

    replicator = ProtocolReplicator("replicator")
    replicator.template_values = ["a", "b", "c", "d"]

    replicated_protocol = DummyInputOutputProtocol(
        f"protocol_{replicator.placeholder_id}")
    replicated_protocol.input_value = ReplicatorValue(replicator.id)

    schema = WorkflowSchema()
    schema.protocol_replicators = [replicator]
    schema.protocol_schemas = [replicated_protocol.schema]

    for index in range(len(replicator.template_values)):

        indexing_protocol = DummyInputOutputProtocol(
            f"indexing_protocol_{index}")
        indexing_protocol.input_value = ProtocolPath("output_value",
                                                     f"protocol_{index}")
        schema.protocol_schemas.append(indexing_protocol.schema)

    schema.validate()

    workflow = Workflow({})
    workflow.schema = schema
Example #2
0
def test_nested_input():

    dict_protocol = DummyInputOutputProtocol("dict_protocol")
    dict_protocol.input_value = {"a": ThermodynamicState(1.0 * unit.kelvin)}

    quantity_protocol = DummyInputOutputProtocol("quantity_protocol")
    quantity_protocol.input_value = ProtocolPath("output_value[a].temperature",
                                                 dict_protocol.id)

    schema = WorkflowSchema()
    schema.protocol_schemas = [dict_protocol.schema, quantity_protocol.schema]
    schema.validate()

    workflow = Workflow({})
    workflow.schema = schema

    workflow_graph = workflow.to_graph()

    with tempfile.TemporaryDirectory() as temporary_directory:

        with DaskLocalCluster() as calculation_backend:

            results_futures = workflow_graph.execute(temporary_directory,
                                                     calculation_backend)

            assert len(results_futures) == 1
            result = results_futures[0].result()

    assert isinstance(result, WorkflowResult)
Example #3
0
def test_simple_workflow_graph(calculation_backend, compute_resources,
                               exception):

    expected_value = (1 * unit.kelvin).plus_minus(0.1 * unit.kelvin)

    protocol_a = DummyInputOutputProtocol("protocol_a")
    protocol_a.input_value = expected_value
    protocol_b = DummyInputOutputProtocol("protocol_b")
    protocol_b.input_value = ProtocolPath("output_value", protocol_a.id)

    schema = WorkflowSchema()
    schema.protocol_schemas = [protocol_a.schema, protocol_b.schema]
    schema.final_value_source = ProtocolPath("output_value", protocol_b.id)
    schema.validate()

    workflow = Workflow({})
    workflow.schema = schema

    workflow_graph = workflow.to_graph()

    with tempfile.TemporaryDirectory() as directory:

        if calculation_backend is not None:

            with DaskLocalCluster() as calculation_backend:

                if exception:

                    with pytest.raises(AssertionError):

                        workflow_graph.execute(directory, calculation_backend,
                                               compute_resources)

                    return

                else:

                    results_futures = workflow_graph.execute(
                        directory, calculation_backend, compute_resources)

                assert len(results_futures) == 1
                result = results_futures[0].result()

        else:

            result = workflow_graph.execute(directory, calculation_backend,
                                            compute_resources)[0]

            if exception:

                with pytest.raises(AssertionError):

                    workflow_graph.execute(directory, calculation_backend,
                                           compute_resources)

                return

        assert isinstance(result, WorkflowResult)
        assert result.value.value == expected_value.value
Example #4
0
def test_workflow_schema_merging(
    calculation_layer, property_type, workflow_merge_function
):
    """Tests that two of the exact the same calculations get merged into one
    by the `WorkflowGraph`."""

    schema = registered_calculation_schemas[calculation_layer][property_type]

    if callable(schema):
        schema = schema()

    if not isinstance(schema, WorkflowCalculationSchema):
        pytest.skip("Not a `WorkflowCalculationSchema`.")

    property_class = getattr(evaluator.properties, property_type)

    dummy_property = create_dummy_property(property_class)

    global_metadata = create_dummy_metadata(dummy_property, calculation_layer)

    workflow_a = Workflow(global_metadata, "workflow_a")
    workflow_a.schema = schema.workflow_schema

    workflow_b = Workflow(global_metadata, "workflow_b")
    workflow_b.schema = schema.workflow_schema

    workflow_graph = workflow_merge_function(workflow_a, workflow_b)

    workflow_graph_a = workflow_a.to_graph()
    workflow_graph_b = workflow_b.to_graph()

    dependants_graph_a = workflow_graph_a._protocol_graph._build_dependants_graph(
        workflow_graph_a.protocols, False, apply_reduction=True
    )
    dependants_graph_b = workflow_graph_b._protocol_graph._build_dependants_graph(
        workflow_graph_b.protocols, False, apply_reduction=True
    )

    ordered_dict_a = OrderedDict(sorted(dependants_graph_a.items()))
    ordered_dict_a = {key: sorted(value) for key, value in ordered_dict_a.items()}
    ordered_dict_b = OrderedDict(sorted(dependants_graph_b.items()))
    ordered_dict_b = {key: sorted(value) for key, value in ordered_dict_b.items()}

    merge_order_a = graph.topological_sort(ordered_dict_a)
    merge_order_b = graph.topological_sort(ordered_dict_b)

    assert len(workflow_graph.protocols) == len(workflow_a.protocols)

    for protocol_id in workflow_a.protocols:
        assert protocol_id in workflow_graph.protocols

    for protocol_id_A, protocol_id_B in zip(merge_order_a, merge_order_b):

        assert protocol_id_A == protocol_id_B

        assert (
            workflow_a.protocols[protocol_id_A].schema.json()
            == workflow_b.protocols[protocol_id_B].schema.json()
        )
Example #5
0
def create_dummy_metadata(dummy_property, calculation_layer):

    global_metadata = Workflow.generate_default_metadata(
        dummy_property, "smirnoff99Frosst-1.1.0.offxml", [])

    if calculation_layer == "ReweightingLayer":

        schema = registered_calculation_schemas[calculation_layer][
            dummy_property.__class__.__name__]

        if callable(schema):
            schema = schema()

        for key, query in schema.storage_queries.items():

            fake_data = [(f"data_path_{index}_{key}", f"ff_path_{index}_{key}")
                         for index in range(3)]

            if (query.substance_query != UNDEFINED
                    and query.substance_query.components_only):
                fake_data = []

                for component_index in enumerate(
                        dummy_property.substance.components):

                    fake_data.append([(
                        f"data_path_{index}_{key}_{component_index}",
                        f"ff_path_{index}_{key}",
                    ) for index in range(3)])

            global_metadata[key] = fake_data

    return global_metadata
Example #6
0
def test_workflow_with_groups():

    expected_value = (1 * unit.kelvin).plus_minus(0.1 * unit.kelvin)

    protocol_a = DummyInputOutputProtocol("protocol_a")
    protocol_a.input_value = expected_value
    protocol_b = DummyInputOutputProtocol("protocol_b")
    protocol_b.input_value = ProtocolPath("output_value", protocol_a.id)

    conditional_group = ConditionalGroup("conditional_group")
    conditional_group.add_protocols(protocol_a, protocol_b)

    condition = ConditionalGroup.Condition()
    condition.right_hand_value = 2 * unit.kelvin
    condition.type = ConditionalGroup.Condition.Type.LessThan
    condition.left_hand_value = ProtocolPath("output_value.value",
                                             conditional_group.id,
                                             protocol_b.id)
    conditional_group.add_condition(condition)

    schema = WorkflowSchema()
    schema.protocol_schemas = [conditional_group.schema]
    schema.final_value_source = ProtocolPath("output_value",
                                             conditional_group.id,
                                             protocol_b.id)
    schema.validate()

    workflow = Workflow({})
    workflow.schema = schema

    workflow_graph = workflow.to_graph()

    with tempfile.TemporaryDirectory() as directory:

        with DaskLocalCluster() as calculation_backend:

            results_futures = workflow_graph.execute(directory,
                                                     calculation_backend)
            assert len(results_futures) == 1

            result = results_futures[0].result()

        assert isinstance(result, WorkflowResult)
        assert result.value.value == expected_value.value
def test_nested_replicators():

    dummy_schema = WorkflowSchema()

    dummy_protocol = DummyReplicableProtocol("dummy_$(rep_a)_$(rep_b)")

    dummy_protocol.replicated_value_a = ReplicatorValue("rep_a")
    dummy_protocol.replicated_value_b = ReplicatorValue("rep_b")

    dummy_schema.protocol_schemas = [dummy_protocol.schema]

    replicator_a = ProtocolReplicator(replicator_id="rep_a")
    replicator_a.template_values = ["a", "b"]

    replicator_b = ProtocolReplicator(replicator_id="rep_b")
    replicator_b.template_values = [1, 2]

    dummy_schema.protocol_replicators = [replicator_a, replicator_b]

    dummy_schema.validate()

    dummy_property = create_dummy_property(Density)

    dummy_metadata = Workflow.generate_default_metadata(
        dummy_property, "smirnoff99Frosst-1.1.0.offxml", [])

    dummy_workflow = Workflow(dummy_metadata, "")
    dummy_workflow.schema = dummy_schema

    assert len(dummy_workflow.protocols) == 4

    assert dummy_workflow.protocols["dummy_0_0"].replicated_value_a == "a"
    assert dummy_workflow.protocols["dummy_0_1"].replicated_value_a == "a"

    assert dummy_workflow.protocols["dummy_1_0"].replicated_value_a == "b"
    assert dummy_workflow.protocols["dummy_1_1"].replicated_value_a == "b"

    assert dummy_workflow.protocols["dummy_0_0"].replicated_value_b == 1
    assert dummy_workflow.protocols["dummy_0_1"].replicated_value_b == 2

    assert dummy_workflow.protocols["dummy_1_0"].replicated_value_b == 1
    assert dummy_workflow.protocols["dummy_1_1"].replicated_value_b == 2

    print(dummy_workflow.schema)
def test_advanced_nested_replicators():

    dummy_schema = WorkflowSchema()

    replicator_a = ProtocolReplicator(replicator_id="replicator_a")
    replicator_a.template_values = ["a", "b"]

    replicator_b = ProtocolReplicator(
        replicator_id=f"replicator_b_{replicator_a.placeholder_id}")
    replicator_b.template_values = ProtocolPath(
        f"dummy_list[{replicator_a.placeholder_id}]", "global")

    dummy_protocol = DummyReplicableProtocol(f"dummy_"
                                             f"{replicator_a.placeholder_id}_"
                                             f"{replicator_b.placeholder_id}")

    dummy_protocol.replicated_value_a = ReplicatorValue(replicator_a.id)
    dummy_protocol.replicated_value_b = ReplicatorValue(replicator_b.id)

    dummy_schema.protocol_schemas = [dummy_protocol.schema]
    dummy_schema.protocol_replicators = [replicator_a, replicator_b]

    dummy_schema.validate()

    dummy_property = create_dummy_property(Density)
    dummy_metadata = Workflow.generate_default_metadata(
        dummy_property, "smirnoff99Frosst-1.1.0.offxml", [])
    dummy_metadata["dummy_list"] = [[1], [2]]

    dummy_workflow = Workflow(dummy_metadata, "")
    dummy_workflow.schema = dummy_schema

    assert len(dummy_workflow.protocols) == 2

    assert dummy_workflow.protocols["dummy_0_0"].replicated_value_a == "a"
    assert dummy_workflow.protocols["dummy_0_0"].replicated_value_b == 1

    assert dummy_workflow.protocols["dummy_1_0"].replicated_value_a == "b"
    assert dummy_workflow.protocols["dummy_1_0"].replicated_value_b == 2
Example #9
0
    def _get_workflow_metadata(
        working_directory,
        physical_property,
        force_field_path,
        parameter_gradient_keys,
        storage_backend,
        calculation_schema,
    ):
        """Returns the global metadata to pass to the workflow.

        Parameters
        ----------
        working_directory: str
            The local directory in which to store all local,
            temporary calculation data from this workflow.
        physical_property : PhysicalProperty
            The property that the workflow will estimate.
        force_field_path : str
            The path to the force field parameters to use in the workflow.
        parameter_gradient_keys: list of ParameterGradientKey
            A list of references to all of the parameters which all observables
            should be differentiated with respect to.
        storage_backend: StorageBackend
            The backend used to store / retrieve data from previous calculations.
        calculation_schema: WorkflowCalculationSchema
            The schema containing all of this layers options.

        Returns
        -------
        dict of str and Any, optional
            The global metadata to make available to a workflow.
            Returns `None` if the required metadata could not be
            found / assembled.
        """
        target_uncertainty = None

        if calculation_schema.absolute_tolerance != UNDEFINED:
            target_uncertainty = calculation_schema.absolute_tolerance
        elif calculation_schema.relative_tolerance != UNDEFINED:
            target_uncertainty = (physical_property.uncertainty *
                                  calculation_schema.relative_tolerance)

        global_metadata = Workflow.generate_default_metadata(
            physical_property,
            force_field_path,
            parameter_gradient_keys,
            target_uncertainty,
        )

        return global_metadata
Example #10
0
def test_from_schema():

    protocol_a = DummyInputOutputProtocol("protocol_a")
    protocol_a.input_value = 1 * unit.kelvin

    schema = WorkflowSchema()
    schema.protocol_schemas = [protocol_a.schema]

    workflow = Workflow.from_schema(schema, {}, unique_id="")

    assert workflow is not None

    rebuilt_schema = workflow.schema
    rebuilt_schema.gradients_sources = UNDEFINED
    rebuilt_schema.outputs_to_store = UNDEFINED

    assert rebuilt_schema.json(format=True) == schema.json(format=True)
Example #11
0
def test_density_dielectric_merging(workflow_merge_function):

    substance = Substance.from_components("C")

    density = evaluator.properties.Density(
        thermodynamic_state=ThermodynamicState(
            temperature=298 * unit.kelvin, pressure=1 * unit.atmosphere
        ),
        phase=PropertyPhase.Liquid,
        substance=substance,
        value=10 * unit.gram / unit.mole,
        uncertainty=1 * unit.gram / unit.mole,
    )

    dielectric = evaluator.properties.DielectricConstant(
        thermodynamic_state=ThermodynamicState(
            temperature=298 * unit.kelvin, pressure=1 * unit.atmosphere
        ),
        phase=PropertyPhase.Liquid,
        substance=substance,
        value=10 * unit.gram / unit.mole,
        uncertainty=1 * unit.gram / unit.mole,
    )

    density_schema = density.default_simulation_schema().workflow_schema
    dielectric_schema = dielectric.default_simulation_schema().workflow_schema

    density_metadata = Workflow.generate_default_metadata(
        density, "smirnoff99Frosst-1.1.0.offxml", []
    )

    dielectric_metadata = Workflow.generate_default_metadata(
        density, "smirnoff99Frosst-1.1.0.offxml", []
    )

    density_workflow = Workflow(density_metadata)
    density_workflow.schema = density_schema

    dielectric_workflow = Workflow(dielectric_metadata)
    dielectric_workflow.schema = dielectric_schema

    workflow_merge_function(density_workflow, dielectric_workflow)

    density_workflow_graph = density_workflow.to_graph()
    dielectric_workflow_graph = dielectric_workflow.to_graph()

    dependants_graph_a = density_workflow_graph._protocol_graph._build_dependants_graph(
        density_workflow_graph.protocols, False, apply_reduction=True
    )
    dependants_graph_b = dielectric_workflow_graph._protocol_graph._build_dependants_graph(
        dielectric_workflow_graph.protocols, False, apply_reduction=True
    )

    merge_order_a = graph.topological_sort(dependants_graph_a)
    merge_order_b = graph.topological_sort(dependants_graph_b)

    for protocol_id_A, protocol_id_B in zip(merge_order_a, merge_order_b):

        if (
            protocol_id_A.find("extract_traj") < 0
            and protocol_id_A.find("extract_stats") < 0
        ):

            assert (
                density_workflow.protocols[protocol_id_A].schema.json()
                == dielectric_workflow.protocols[protocol_id_B].schema.json()
            )

        else:

            assert (
                density_workflow.protocols[protocol_id_A].schema.json()
                != dielectric_workflow.protocols[protocol_id_B].schema.json()
            )
Example #12
0
    def _build_workflow_graph(
        cls,
        working_directory,
        storage_backend,
        properties,
        force_field_path,
        parameter_gradient_keys,
        options,
    ):
        """ Construct a graph of the protocols needed to calculate a set of
        properties.

        Parameters
        ----------
        working_directory: str
            The local directory in which to store all local,
            temporary calculation data from this graph.
        storage_backend: StorageBackend
            The backend used to store / retrieve data from previous calculations.
        properties : list of PhysicalProperty
            The properties to attempt to compute.
        force_field_path : str
            The path to the force field parameters to use in the workflow.
        parameter_gradient_keys: list of ParameterGradientKey
            A list of references to all of the parameters which all observables
            should be differentiated with respect to.
        options: RequestOptions
            The options to run the workflows with.
        """

        provenance = {}
        workflows = []

        for index, physical_property in enumerate(properties):

            logger.info(f"Building workflow {index} of {len(properties)}")

            property_type = type(physical_property).__name__

            # Make sure a schema has been defined for this class of property
            # and this layer.
            if (property_type not in options.calculation_schemas
                    or cls.__name__
                    not in options.calculation_schemas[property_type]):
                continue

            schema = options.calculation_schemas[property_type][cls.__name__]

            # Make sure the calculation schema is the correct type for this layer.
            assert isinstance(schema, WorkflowCalculationSchema)
            assert isinstance(schema, cls.required_schema_type())

            global_metadata = cls._get_workflow_metadata(
                working_directory,
                physical_property,
                force_field_path,
                parameter_gradient_keys,
                storage_backend,
                schema,
            )

            if global_metadata is None:
                # Make sure we have metadata returned for this
                # property, e.g. we have data to reweight if
                # required.
                continue

            workflow = Workflow(global_metadata, physical_property.id)
            workflow.schema = schema.workflow_schema
            workflows.append(workflow)

            provenance[physical_property.id] = CalculationSource(
                fidelity=cls.__name__, provenance=workflow.schema)

        workflow_graph = WorkflowGraph()
        workflow_graph.add_workflows(*workflows)

        return workflow_graph, provenance
def test_group_replicators():

    dummy_schema = WorkflowSchema()

    replicator_id = "replicator"

    dummy_replicated_protocol = DummyInputOutputProtocol(
        f"dummy_$({replicator_id})")
    dummy_replicated_protocol.input_value = ReplicatorValue(replicator_id)

    dummy_group = ProtocolGroup("dummy_group")
    dummy_group.add_protocols(dummy_replicated_protocol)

    dummy_protocol_single_value = DummyInputOutputProtocol(
        f"dummy_single_$({replicator_id})")
    dummy_protocol_single_value.input_value = ProtocolPath(
        "output_value", dummy_group.id, dummy_replicated_protocol.id)

    dummy_protocol_list_value = AddValues(f"dummy_list")
    dummy_protocol_list_value.values = ProtocolPath(
        "output_value", dummy_group.id, dummy_replicated_protocol.id)

    dummy_schema.protocol_schemas = [
        dummy_group.schema,
        dummy_protocol_single_value.schema,
        dummy_protocol_list_value.schema,
    ]

    replicator = ProtocolReplicator(replicator_id)

    replicator.template_values = [
        (1.0 * unit.kelvin).plus_minus(1.0 * unit.kelvin),
        (2.0 * unit.kelvin).plus_minus(2.0 * unit.kelvin),
    ]

    dummy_schema.protocol_replicators = [replicator]
    dummy_schema.validate()

    dummy_property = create_dummy_property(Density)

    dummy_metadata = Workflow.generate_default_metadata(
        dummy_property, "smirnoff99Frosst-1.1.0.offxml", [])

    dummy_workflow = Workflow(dummy_metadata, "")
    dummy_workflow.schema = dummy_schema

    assert len(dummy_workflow.protocols) == 4

    assert (dummy_workflow.protocols[dummy_group.id].protocols["dummy_0"].
            input_value.value == replicator.template_values[0].value)
    assert (dummy_workflow.protocols[dummy_group.id].protocols["dummy_1"].
            input_value.value == replicator.template_values[1].value)

    assert dummy_workflow.protocols[
        "dummy_single_0"].input_value == ProtocolPath("output_value",
                                                      dummy_group.id,
                                                      "dummy_0")
    assert dummy_workflow.protocols[
        "dummy_single_1"].input_value == ProtocolPath("output_value",
                                                      dummy_group.id,
                                                      "dummy_1")

    assert len(dummy_workflow.protocols["dummy_list"].values) == 2

    assert dummy_workflow.protocols["dummy_list"].values[0] == ProtocolPath(
        "output_value", dummy_group.id, "dummy_0")
    assert dummy_workflow.protocols["dummy_list"].values[1] == ProtocolPath(
        "output_value", dummy_group.id, "dummy_1")