def images(): image1 = ImageIOLoader().load( fname=Path(__file__).parent / "resources" / "images" / "1_mask.png" )[0] image2 = ImageIOLoader().load( fname=Path(__file__).parent / "resources" / "images" / "2_mask.png" )[0] return [image1, image2]
def images(): image1 = ImageIOLoader().load( fname=Path(__file__).parent / 'resources' / 'images' / '1_mask.png' )[0] image2 = ImageIOLoader().load( fname=Path(__file__).parent / 'resources' / 'images' / '2_mask.png' )[0] return [image1, image2]
def test_image_io_loader(): fname = Path(__file__).parent / 'resources' / 'images' / '1_mask.png' o = ImageIOLoader.load(fname=fname) assert o['path'] == fname assert o['img'].shape == (584, 565) with pytest.raises(FileLoaderError): non_image_fname = (Path(__file__).parent / 'resources' / 'csv' / 'algorithm_result.csv') ImageIOLoader.load(fname=non_image_fname)
def __init__(self): self._metrics_output = {} self._total_G = 0 self._total_S = 0 super().__init__( file_loader=ImageIOLoader(), validators=( NumberOfCasesValidator(num_cases=4), UniquePathIndicesValidator(), UniqueImagesValidator(), ), aggregates={ "mean", }, )
def test_image_io_loader(): fname = Path(__file__).parent / "resources" / "images" / "1_mask.png" loader = ImageIOLoader() o = loader.load(fname=fname)[0] img = loader.load_image(fname) assert o["path"] == fname assert o["hash"] == loader.hash_image(img) assert img.shape == (584, 565) with pytest.raises(FileLoaderError): non_image_fname = (Path(__file__).parent / "resources" / "csv" / "algorithm_result.csv") ImageIOLoader().load(fname=non_image_fname)