def augment(xi): ks_pip_p = np.sqrt(np.sum(xi[:, 0:3]**2, axis=-1)).reshape(-1, 1) ks_pim_p = np.sqrt(np.sum(xi[:, 3:6]**2, axis=-1)).reshape(-1, 1) ks_p = np.sqrt(np.sum(xi[:, 7:10]**2, axis=-1)).reshape(-1, 1) ks_m = np.sqrt(xi[:, 6]**2 - np.sum(xi[:, 7:10]** 2, axis=-1)).reshape(-1, 1) phi_pip_p = np.sqrt(np.sum(xi[:, 10:13]**2, axis=-1)).reshape(-1, 1) phi_pim_p = np.sqrt(np.sum(xi[:, 13:16]**2, axis=-1)).reshape(-1, 1) phi_p = np.sqrt(np.sum(xi[:, 17:20]**2, axis=-1)).reshape(-1, 1) phi_m = np.sqrt(xi[:, 16]**2 - np.sum(xi[:, 17:20]** 2, axis=-1)).reshape(-1, 1) d0_p = np.sqrt(np.sum(xi[:, 21:24]**2, axis=-1)).reshape(-1, 1) d0_m = np.sqrt(xi[:, 20]**2 - np.sum(xi[:, 21:24]** 2, axis=-1)).reshape(-1, 1) ks_dpx = (xi[:, 0] + xi[:, 3] - xi[:, 7]).reshape(-1, 1) ks_dpy = (xi[:, 1] + xi[:, 4] - xi[:, 8]).reshape(-1, 1) ks_dpz = (xi[:, 2] + xi[:, 5] - xi[:, 9]).reshape(-1, 1) ks_dpe = (energy(MASS_DICT['pi+'], xi[:, 0:3]) + energy(MASS_DICT['pi+'], xi[:, 3:6]) - xi[:, 6]).reshape(-1, 1) phi_dpx = (xi[:, 10] + xi[:, 13] - xi[:, 17]).reshape(-1, 1) phi_dpy = (xi[:, 11] + xi[:, 14] - xi[:, 18]).reshape(-1, 1) phi_dpz = (xi[:, 12] + xi[:, 15] - xi[:, 19]).reshape(-1, 1) phi_dpe = (energy(MASS_DICT['pi+'], xi[:, 10:13]) + energy(MASS_DICT['pi+'], xi[:, 13:16]) - xi[:, 16]).reshape(-1, 1) d0_dpx = (xi[:, 7] + xi[:, 17] - xi[:, 21]).reshape(-1, 1) d0_dpy = (xi[:, 8] + xi[:, 18] - xi[:, 22]).reshape(-1, 1) d0_dpz = (xi[:, 9] + xi[:, 19] - xi[:, 23]).reshape(-1, 1) d0_dpe = (xi[:, 6] + xi[:, 16] - xi[:, 20]).reshape(-1, 1) return np.hstack((xi, ks_pip_p, ks_pim_p, ks_p, ks_m, phi_pip_p, phi_pim_p, phi_p, phi_m, d0_p, d0_m, ks_dpx, ks_dpy, ks_dpz, ks_dpe, phi_dpx, phi_dpy, phi_dpz, phi_dpe, d0_dpx, d0_dpy, d0_dpz, d0_dpe))
def augment(xi): ks_m = np.sqrt(xi[:, 6]**2 - np.sum(xi[:, 7:10] ** 2, axis=-1)).reshape(-1, 1) ks_p = np.sqrt(np.sum(xi[:, 7:10]**2, axis=-1)).reshape(-1, 1) pip_p = np.sqrt(np.sum(xi[:, :3]**2, axis=-1)).reshape(-1, 1) pim_p = np.sqrt(np.sum(xi[:, 3:6]**2, axis=-1)).reshape(-1, 1) dpx = (xi[:, 0] + xi[:, 3] - xi[:, 7]).reshape(-1, 1) dpy = (xi[:, 1] + xi[:, 4] - xi[:, 8]).reshape(-1, 1) dpz = (xi[:, 2] + xi[:, 5] - xi[:, 9]).reshape(-1, 1) dpe = (energy(MASS_DICT['pi+'], xi[:, 0:3]) + energy(MASS_DICT['pi+'], xi[:, 3:6]) - xi[:, 6]).reshape(-1, 1) return np.hstack((xi[:, :10], ks_m, ks_p, pip_p, pim_p, dpx, dpy, dpz, dpe))
def plot_pool(xi, cov, pimgen, pipgen): ks3 = pipgen + pimgen xi0 = np.hstack((pipgen, pimgen, energy(MASS_DICT['K0_S'], ks3).reshape(-1, 1), ks3)) label = [ 'pip_px', 'pip_py', 'pip_pz', 'pim_px', 'pim_py', 'pim_pz', 'ks_E', 'ks_px', 'ks_py', 'ks_pz' ] for i in range(xi.shape[1]): m = (xi[:, i] - xi0[:, i]) / cov[:, i, i]**0.5 for _ in range(5): mean, std = np.mean(m), np.std(m) m = m[np.abs(m - mean) < 5. * std] print(m.shape, np.mean(m), np.std(m)) if np.std(m) < 0.000001: return x, bins, e = make_hist(m) plt.figure(figsize=(6, 5)) plt.errorbar(x, bins, e, linestyle='none', marker='.', markersize=4) plt.grid() plt.xlabel(label[i], fontsize=16) plt.tight_layout() plt.savefig('fig/pool_{}.png'.format(label[i])) plt.show()
def plot_hist(xi, xi0, pimgen, pipgen): ks3 = pipgen + pimgen xi_gen = np.hstack((pipgen, pimgen, energy(MASS_DICT['K0_S'], ks3).reshape(-1, 1), ks3)) def augment(xi): ks_m = np.sqrt(xi[:, 6]**2 - np.sum(xi[:, 7:10]**2, axis=-1)).reshape( -1, 1) ks_p = np.sqrt(np.sum(xi[:, 7:10]**2, axis=-1)).reshape(-1, 1) pip_p = np.sqrt(np.sum(xi[:, :3]**2, axis=-1)).reshape(-1, 1) pim_p = np.sqrt(np.sum(xi[:, 3:6]**2, axis=-1)).reshape(-1, 1) dpx = (xi[:, 0] + xi[:, 3] - xi[:, 7]).reshape(-1, 1) dpy = (xi[:, 1] + xi[:, 4] - xi[:, 8]).reshape(-1, 1) dpz = (xi[:, 2] + xi[:, 5] - xi[:, 9]).reshape(-1, 1) return np.hstack((xi, ks_m, ks_p, pip_p, pim_p, dpx, dpy, dpz)) xi = augment(xi) xi0 = augment(xi0) xi_gen = augment(xi_gen) label = [ 'pip_px', 'pip_py', 'pip_pz', 'pim_px', 'pim_py', 'pim_pz', 'ks_E', 'ks_px', 'ks_py', 'ks_pz', 'ks_m', 'ks_p', 'pip_p', 'pim_p', 'dpx', 'dpy', 'dpz' ] for i in range(xi.shape[1]): fitted = xi[:, i] - xi_gen[:, i] unfitted = xi0[:, i] - xi_gen[:, i] for _ in range(5): fit_mean, fit_std = np.mean(fitted), np.std(fitted) fitted = fitted[np.abs(fitted - fit_mean) < 5. * fit_std] unfit_mean, unfit_std = np.mean(unfitted), np.std(unfitted) unfitted = unfitted[np.abs(unfitted - unfit_mean) < 5. * unfit_std] plt.figure(figsize=(8, 6)) if len(fitted) != 0: plt.errorbar(*make_hist(fitted, density=True), linestyle='none', marker='.', markersize=4, label='fit') if len(unfitted) != 0: plt.errorbar(*make_hist(unfitted, density=True), linestyle='none', marker='.', markersize=4, label='unfit') plt.plot([], [], ' ', label="fit std {:0.3f}".format(fit_std)) plt.plot([], [], ' ', label="unfit std {:0.3f}".format(unfit_std)) plt.plot([], [], ' ', label="fit mean {:0.3f}".format(fit_mean)) plt.plot([], [], ' ', label="unfit mean {:0.3f}".format(unfit_mean)) plt.legend(loc='upper right') plt.grid() plt.xlabel(label[i], fontsize=16) plt.tight_layout() plt.savefig('fig/fit_{}.png'.format(label[i])) plt.show()
def plot_pull_d0(xi, cov, p3_ks_pip_gen, p3_ks_pim_gen, p3_phi_pip_gen, p3_phi_pim_gen, savedir): ks3 = p3_ks_pip_gen + p3_ks_pim_gen phi3 = p3_phi_pip_gen + p3_phi_pim_gen d03 = ks3 + phi3 eks_gen = energy(MASS_DICT['K0_S'], ks3).reshape(-1, 1) ephi_gen = energy(MASS_DICT['phi'], phi3).reshape(-1, 1) ed0_gen = energy(MASS_DICT['D0'], d03).reshape(-1, 1) xi_gen = np.hstack((p3_ks_pip_gen, p3_ks_pim_gen, eks_gen, ks3, p3_phi_pip_gen, p3_phi_pim_gen, ephi_gen, phi3, ed0_gen, d03)) if (savedir.split('/')[0] == 'reffit'): xi = np.hstack((xi[:, 0:10], xi[:,15:25], xi[:,30:34])) cov[:, 10:20, 10:20] = cov[:, 15:25, 15:25] cov[:, 20:24, 20:24] = cov[:, 30:34, 30:34] filenames = ['ks_pip_px', 'ks_pip_py', 'ks_pip_pz', 'ks_pim_px', 'ks_pim_py', 'ks_pim_pz', 'ks_E', 'ks_px', 'ks_py', 'ks_pz', 'phi_pip_px', 'phi_pip_py', 'phi_pip_pz', 'phi_pim_px', 'phi_pim_py', 'phi_pim_pz', 'phi_E', 'phi_px', 'phi_py', 'phi_pz', 'd0_E', 'd0_px', 'd0_py', 'd0_pz', ] labels = { 'ks_pip_px':r'$p_x(\pi^+_{K_S^0})$ (MeV)', 'ks_pip_py':r'$p_y(\pi^+_{K_S^0})$ (MeV)', 'ks_pip_pz':r'$p_z(\pi^+_{K_S^0})$ (MeV)', 'ks_pim_px':r'$p_x(\pi^-_{K_S^0})$ (MeV)', 'ks_pim_py':r'$p_y(\pi^-_{K_S^0})$ (MeV)', 'ks_pim_pz':r'$p_z(\pi^-_{K_S^0})$ (MeV)', 'ks_E' :r'$E(K_S^0)$ (MeV)', 'ks_px' :r'$p_x(K_S^0)$ (MeV)', 'ks_py' :r'$p_y(K_S^0)$ (MeV)', 'ks_pz' :r'$p_z(K_S^0)$ (MeV)', 'ks_p' :r'$p(K_S^0)$ (MeV)', 'ks_m' :r'$m(K_S^0)$ (MeV)', 'ks_dpx' :r'Conservation $p_x(K_S^0)$ (MeV)', 'ks_dpy' :r'Conservation $p_y(K_S^0)$ (MeV)', 'ks_dpz' :r'Conservation $p_z(K_S^0)$ (MeV)', 'ks_dpe' :r'Conservation $E(K_S^0)$ (MeV)', 'phi_pip_px':r'$p_x(\pi^+_{\phi})$ (MeV)', 'phi_pip_py':r'$p_y(\pi^+_{\phi})$ (MeV)', 'phi_pip_pz':r'$p_z(\pi^+_{\phi})$ (MeV)', 'phi_pip_p' :r'$p(\pi^+_{\phi})$ (MeV)', 'phi_pim_px':r'$p_x(\pi^-_{\phi})$ (MeV)', 'phi_pim_py':r'$p_y(\pi^-_{\phi})$ (MeV)', 'phi_pim_pz':r'$p_z(\pi^-_{\phi})$ (MeV)', 'phi_pim_p' :r'$p(\pi^-_{\phi})$ (MeV)', 'phi_E' :r'$E(\phi)$ (MeV)', 'phi_px' :r'$p_x(\phi)$ (MeV)', 'phi_py' :r'$p_y(\phi)$ (MeV)', 'phi_pz' :r'$p_z(\phi)$ (MeV)', 'phi_p' :r'$p(\phi)$ (MeV)', 'phi_m' :r'$m(\phi)$ (MeV)', 'phi_dpx' :r'Conservation $p_x(\phi)$ (MeV)', 'phi_dpy' :r'Conservation $p_y(\phi)$ (MeV)', 'phi_dpz' :r'Conservation $p_z(\phi)$ (MeV)', 'phi_dpe' :r'Conservation $E(\phi)$ (MeV)', 'd0_E' :r'$E(D^0)$ (MeV)', 'd0_px' :r'$p_x(D^0)$ (MeV)', 'd0_py' :r'$p_y(D^0)$ (MeV)', 'd0_pz' :r'$p_z(D^0)$ (MeV)', 'd0_p' :r'$p(D^0)$ (MeV)', 'd0_m' :r'$m(D^0)$ (MeV)', 'd0_dpx' :r'Conservation $p_x(D^0)$ (MeV)', 'd0_dpy' :r'Conservation $p_y(D^0)$ (MeV)', 'd0_dpz' :r'Conservation $p_z(D^0)$ (MeV)', 'd0_dpe' :r'Conservation $E(D^0)$ (MeV)',} for i in range(xi.shape[1]): if filenames[i] not in ['ks_E']: continue m = (xi[:, i] - xi_gen[:, i])[cov[:, i, i] > 0] cov2 = cov[cov[:, i, i] > 0] m = m / cov2[:, i, i] ** 0.5 for _ in range(5): mean, std = np.mean(m), np.std(m) m = m[np.abs(m - mean) < 5.*std] if np.std(m) < 0.000001: return x, bins, e = make_hist(m) fig, ax = plt.subplots(figsize=(4, 3)) ax.errorbar(x, bins, e, linestyle='none', marker='.', markersize=4) norm = (x[-1] - x[0]) / len(x) * sum(bins) mu = 0 sigma = 1 x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100) plt.plot(x, norm * stats.norm.pdf(x, mu, sigma)) textstr = '\n'.join(( r"$\mu$ = {:0.3f}".format(mean), r"$\sigma~$ = {:0.3f}".format(std) )) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=12, verticalalignment='top', bbox=props) ax.grid() plt.xlabel('pull ' + labels[filenames[i]], fontsize=12) plt.tight_layout() plt.savefig('fig/d_meson/{}/pull_{}.pgf'.format(savedir, filenames[i]))
def plot_pull(xi, cov, pimgen, pipgen, savedir): ks3 = pipgen + pimgen xi0 = np.hstack((pipgen, pimgen, energy( MASS_DICT['K0_S'], ks3).reshape(-1, 1), ks3)) filenames = ['pip_px', 'pip_py', 'pip_pz', 'pim_px', 'pim_py', 'pim_pz', 'ks_E', 'ks_px', 'ks_py', 'ks_pz'] labels = {'pip_px':r'$p_x(\pi+)$ (MeV)', 'pip_py':r'$p_y(\pi+)$ (MeV)', 'pip_pz':r'$p_z(\pi+)$ (MeV)', 'pim_px':r'$p_x(\pi-)$ (MeV)', 'pim_py':r'$p_y(\pi-)$ (MeV)', 'pim_pz':r'$p_z(\pi-)$ (MeV)', 'ks_E' :r'$E(K_S^0)$ (MeV)', 'ks_px' :r'$p_x(K_S^0)$ (MeV)', 'ks_py' :r'$p_y(K_S^0)$ (MeV)', 'ks_pz' :r'$p_z(K_S^0)$ (MeV)' } for i in range(xi0.shape[1]): fig, ax = plt.subplots(figsize=(4, 3)) # ax.figure() m = (xi[:, i] - xi0[:, i])[cov[:, i, i] > 0] cov2 = cov[cov[:, i, i] > 0] m = m / cov2[:, i, i] ** 0.5 # m = (xi[:, i] - xi0[:, i]) / cov[:, i, i] ** 0.5 for _ in range(5): mean, std = np.mean(m), np.std(m) m = m[np.abs(m - mean) < 5.*std] print(m.shape, np.mean(m), np.std(m)) if np.std(m) < 0.000001 or len(m) == 0: return x, bins, e = make_hist(m) ax.errorbar(x, bins, e, linestyle='none', marker='.', markersize=4) norm = (x[-1] - x[0]) / len(x) * sum(bins) mu = 0 sigma = 1 x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100) ax.plot(x, norm * stats.norm.pdf(x, mu, sigma)) # textstr = '\n'.join(( # r"$\sigma_{{after}}$ = {:0.3f}".format(fit_std), # r"$\sigma_{{before}}$ = {:0.3f}".format(unfit_std), # r"$\mu_{{after}}$ = {:0.3f}".format(fit_mean), # r"$\mu_{{before}}$ = {:0.3f}".format(unfit_mean) # )) # props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=12, # verticalalignment='top', bbox=props) ax.plot([], [], ' ', label=r"$mean$ {:0.3f}".format(mean)) ax.plot([], [], ' ', label=r"$\sigma~$ {:0.3f}".format(std)) ax.legend() ax.grid() ax.xlabel(labels[filenames[i]], fontsize=12) ax.tight_layout() ax.show()
def plot_params(xi, xi0, pimgen, pipgen, savedir): ks3 = pipgen + pimgen xi_gen = np.hstack((pipgen, pimgen, (energy(MASS_DICT['pi+'], pipgen) + energy(MASS_DICT['pi+'], pimgen)).reshape(-1, 1), ks3)) def augment(xi): ks_m = np.sqrt(xi[:, 6]**2 - np.sum(xi[:, 7:10] ** 2, axis=-1)).reshape(-1, 1) ks_p = np.sqrt(np.sum(xi[:, 7:10]**2, axis=-1)).reshape(-1, 1) pip_p = np.sqrt(np.sum(xi[:, :3]**2, axis=-1)).reshape(-1, 1) pim_p = np.sqrt(np.sum(xi[:, 3:6]**2, axis=-1)).reshape(-1, 1) dpx = (xi[:, 0] + xi[:, 3] - xi[:, 7]).reshape(-1, 1) dpy = (xi[:, 1] + xi[:, 4] - xi[:, 8]).reshape(-1, 1) dpz = (xi[:, 2] + xi[:, 5] - xi[:, 9]).reshape(-1, 1) dpe = (energy(MASS_DICT['pi+'], xi[:, 0:3]) + energy(MASS_DICT['pi+'], xi[:, 3:6]) - xi[:, 6]).reshape(-1, 1) return np.hstack((xi[:, :10], ks_m, ks_p, pip_p, pim_p, dpx, dpy, dpz, dpe)) xi = augment(xi) xi0 = augment(xi0) xi_gen = augment(xi_gen) filenames = ['pip_px', 'pip_py', 'pip_pz', 'pim_px', 'pim_py', 'pim_pz', 'ks_E', 'ks_px', 'ks_py', 'ks_pz', 'ks_m', 'ks_p', 'pip_p', 'pim_p', 'dpx', 'dpy', 'dpz', 'dpe'] labels = { 'pip_px':r'$p_x(\pi+)$ (MeV)', 'pip_py':r'$p_y(\pi+)$ (MeV)', 'pip_pz':r'$p_z(\pi+)$ (MeV)', 'pim_px':r'$p_x(\pi-)$ (MeV)', 'pim_py':r'$p_y(\pi-)$ (MeV)', 'pim_pz':r'$p_z(\pi-)$ (MeV)', 'ks_E' :r'$E(K_S^0)$ (MeV)', 'ks_px' :r'$p_x(K_S^0)$ (MeV)', 'ks_py' :r'$p_y(K_S^0)$ (MeV)', 'ks_pz' :r'$p_z(K_S^0)$ (MeV)', 'ks_m' :r'$m(K_S^0)$ (MeV)', 'ks_p' :r'$p(K_S^0)$ (MeV)', 'pip_p' :r'$p(\pi+)$ (MeV)', 'pim_p' :r'$p(\pi-)$ (MeV)', 'dpx' :r'Conservation $p_x$ (MeV)', 'dpy' :r'Conservation $p_y$ (MeV)', 'dpz' :r'Conservation $p_z$ (MeV)', 'dpe' :r'Conservation $E$ (MeV)',} for i in range(xi.shape[1]): fitted = xi[:, i] - xi_gen[:, i] unfitted = xi0[:, i] - xi_gen[:, i] for _ in range(5): fit_mean, fit_std = np.mean(fitted), np.std(fitted) fitted = fitted[np.abs(fitted - fit_mean) < 5.*fit_std] unfit_mean, unfit_std = np.mean(unfitted), np.std(unfitted) unfitted = unfitted[np.abs(unfitted - unfit_mean) < 5.*unfit_std] plt.figure(figsize=(4, 3)) if len(fitted) != 0: plt.errorbar(*make_hist(fitted, density=True), linestyle='none', marker='.', markersize=4, label='fit') if len(unfitted) != 0: plt.errorbar(*make_hist(unfitted, density=True), linestyle='none', marker='.', markersize=4, label='unfit') plt.plot([], [], ' ', label=r"$\sigma_{{fit}}$ {:0.3f}".format(fit_std)) plt.plot([], [], ' ', label=r"$\sigma_{{unfit}}$ {:0.3f}".format(unfit_std)) plt.plot([], [], ' ', label=r"$\mu_{{fit}}$ {:0.3f}".format(fit_mean)) plt.plot([], [], ' ', label=r"$\mu_{{unfit}}$ {:0.3f}".format(unfit_mean)) plt.legend(loc='upper right') plt.grid() plt.xlabel(labels[filenames[i]], fontsize=14) plt.tight_layout() pathlib.Path('fig/kaon/{}'.format(savedir)).mkdir(parents=True, exist_ok=True) plt.savefig('fig/kaon/{}/fit_{}.pgf'.format(savedir, filenames[i]))
def plot_params_d0(xi, xi0, p3_ks_pip_gen, p3_ks_pim_gen, p3_phi_pip_gen, p3_phi_pim_gen, savedir): ks3 = p3_ks_pip_gen + p3_ks_pim_gen phi3 = p3_phi_pip_gen + p3_phi_pim_gen d03 = ks3 + phi3 eks_gen = energy(MASS_DICT['K0_S'], ks3).reshape(-1, 1) ephi_gen = energy(MASS_DICT['phi'], phi3).reshape(-1, 1) ed0_gen = energy(MASS_DICT['D0'], d03).reshape(-1, 1) xi_gen = np.hstack((p3_ks_pip_gen, p3_ks_pim_gen, eks_gen, ks3, p3_phi_pip_gen, p3_phi_pim_gen, ephi_gen, phi3, ed0_gen, d03)) if (savedir.split('/')[0] == 'reffit'): xi = np.hstack((xi[:, 0:10], xi[:,15:25], xi[:,30:34])) xi0 = np.hstack((xi0[:, 0:10], xi0[:,15:25], xi0[:,30:34])) def augment(xi): ks_pip_p = np.sqrt(np.sum(xi[:, 0:3]**2, axis=-1)).reshape(-1, 1) ks_pim_p = np.sqrt(np.sum(xi[:, 3:6]**2, axis=-1)).reshape(-1, 1) ks_p = np.sqrt(np.sum(xi[:, 7:10]**2, axis=-1)).reshape(-1, 1) ks_m = np.sqrt(xi[:, 6]**2 - np.sum(xi[:, 7:10]** 2, axis=-1)).reshape(-1, 1) phi_pip_p = np.sqrt(np.sum(xi[:, 10:13]**2, axis=-1)).reshape(-1, 1) phi_pim_p = np.sqrt(np.sum(xi[:, 13:16]**2, axis=-1)).reshape(-1, 1) phi_p = np.sqrt(np.sum(xi[:, 17:20]**2, axis=-1)).reshape(-1, 1) phi_m = np.sqrt(xi[:, 16]**2 - np.sum(xi[:, 17:20]** 2, axis=-1)).reshape(-1, 1) d0_p = np.sqrt(np.sum(xi[:, 21:24]**2, axis=-1)).reshape(-1, 1) d0_m = np.sqrt(xi[:, 20]**2 - np.sum(xi[:, 21:24]** 2, axis=-1)).reshape(-1, 1) ks_dpx = (xi[:, 0] + xi[:, 3] - xi[:, 7]).reshape(-1, 1) ks_dpy = (xi[:, 1] + xi[:, 4] - xi[:, 8]).reshape(-1, 1) ks_dpz = (xi[:, 2] + xi[:, 5] - xi[:, 9]).reshape(-1, 1) ks_dpe = (energy(MASS_DICT['pi+'], xi[:, 0:3]) + energy(MASS_DICT['pi+'], xi[:, 3:6]) - xi[:, 6]).reshape(-1, 1) phi_dpx = (xi[:, 10] + xi[:, 13] - xi[:, 17]).reshape(-1, 1) phi_dpy = (xi[:, 11] + xi[:, 14] - xi[:, 18]).reshape(-1, 1) phi_dpz = (xi[:, 12] + xi[:, 15] - xi[:, 19]).reshape(-1, 1) phi_dpe = (energy(MASS_DICT['pi+'], xi[:, 10:13]) + energy(MASS_DICT['pi+'], xi[:, 13:16]) - xi[:, 16]).reshape(-1, 1) d0_dpx = (xi[:, 7] + xi[:, 17] - xi[:, 21]).reshape(-1, 1) d0_dpy = (xi[:, 8] + xi[:, 18] - xi[:, 22]).reshape(-1, 1) d0_dpz = (xi[:, 9] + xi[:, 19] - xi[:, 23]).reshape(-1, 1) d0_dpe = (xi[:, 6] + xi[:, 16] - xi[:, 20]).reshape(-1, 1) return np.hstack((xi, ks_pip_p, ks_pim_p, ks_p, ks_m, phi_pip_p, phi_pim_p, phi_p, phi_m, d0_p, d0_m, ks_dpx, ks_dpy, ks_dpz, ks_dpe, phi_dpx, phi_dpy, phi_dpz, phi_dpe, d0_dpx, d0_dpy, d0_dpz, d0_dpe)) xi = augment(xi) xi0 = augment(xi0) xi_gen = augment(xi_gen) filenames = ['ks_pip_px', 'ks_pip_py', 'ks_pip_pz', 'ks_pim_px', 'ks_pim_py', 'ks_pim_pz', 'ks_E', 'ks_px', 'ks_py', 'ks_pz', 'phi_pip_px', 'phi_pip_py', 'phi_pip_pz', 'phi_pim_px', 'phi_pim_py', 'phi_pim_pz', 'phi_E', 'phi_px', 'phi_py', 'phi_pz', 'd0_E', 'd0_px', 'd0_py', 'd0_pz', 'ks_pip_p', 'ks_pim_p', 'ks_p', 'ks_m', 'phi_pip_p', 'phi_pim_p', 'phi_p', 'phi_m', 'd0_p', 'd0_m', 'ks_dpx', 'ks_dpy', 'ks_dpz', 'ks_dpe', 'phi_dpx', 'phi_dpy', 'phi_dpz', 'phi_dpe', 'd0_dpx', 'd0_dpy', 'd0_dpz', 'd0_dpe', ] labels = { 'ks_pip_px':r'$p_x(\pi^+_{K_S^0})$ (MeV)', 'ks_pip_py':r'$p_y(\pi^+_{K_S^0})$ (MeV)', 'ks_pip_pz':r'$p_z(\pi^+_{K_S^0})$ (MeV)', 'ks_pip_p' :r'$p(\pi^+_{K_S^0})$ (MeV)', 'ks_pim_px':r'$p_x(\pi^-_{K_S^0})$ (MeV)', 'ks_pim_py':r'$p_y(\pi^-_{K_S^0})$ (MeV)', 'ks_pim_pz':r'$p_z(\pi^-_{K_S^0})$ (MeV)', 'ks_pim_p' :r'$p(\pi^-_{K_S^0})$ (MeV)', 'ks_E' :r'$E(K_S^0)$ (MeV)', 'ks_px' :r'$p_x(K_S^0)$ (MeV)', 'ks_py' :r'$p_y(K_S^0)$ (MeV)', 'ks_pz' :r'$p_z(K_S^0)$ (MeV)', 'ks_p' :r'$p(K_S^0)$ (MeV)', 'ks_m' :r'$m(K_S^0)$ (MeV)', 'ks_dpx' :r'Conservation $p_x(K_S^0)$ (MeV)', 'ks_dpy' :r'Conservation $p_y(K_S^0)$ (MeV)', 'ks_dpz' :r'Conservation $p_z(K_S^0)$ (MeV)', 'ks_dpe' :r'Conservation $E(K_S^0)$ (MeV)', 'phi_pip_px':r'$p_x(\pi^+_{\phi})$ (MeV)', 'phi_pip_py':r'$p_y(\pi^+_{\phi})$ (MeV)', 'phi_pip_pz':r'$p_z(\pi^+_{\phi})$ (MeV)', 'phi_pip_p' :r'$p(\pi^+_{\phi})$ (MeV)', 'phi_pim_px':r'$p_x(\pi^-_{\phi})$ (MeV)', 'phi_pim_py':r'$p_y(\pi^-_{\phi})$ (MeV)', 'phi_pim_pz':r'$p_z(\pi^-_{\phi})$ (MeV)', 'phi_pim_p' :r'$p(\pi^-_{\phi})$ (MeV)', 'phi_E' :r'$E(\phi)$ (MeV)', 'phi_px' :r'$p_x(\phi)$ (MeV)', 'phi_py' :r'$p_y(\phi)$ (MeV)', 'phi_pz' :r'$p_z(\phi)$ (MeV)', 'phi_p' :r'$p(\phi)$ (MeV)', 'phi_m' :r'$m(\phi)$ (MeV)', 'phi_dpx' :r'Conservation $p_x(\phi)$ (MeV)', 'phi_dpy' :r'Conservation $p_y(\phi)$ (MeV)', 'phi_dpz' :r'Conservation $p_z(\phi)$ (MeV)', 'phi_dpe' :r'Conservation $E(\phi)$ (MeV)', 'd0_E' :r'$p_x(D^0)$ (MeV)', 'd0_px' :r'$p_x(D^0)$ (MeV)', 'd0_py' :r'$p_y(D^0)$ (MeV)', 'd0_pz' :r'$p_z(D^0$ (MeV)', 'd0_p' :r'$p(D^0)$ (MeV)', 'd0_m' :r'$m(D^0)$ (MeV)', 'd0_dpx' :r'Conservation $p_x(D^0)$ (MeV)', 'd0_dpy' :r'Conservation $p_y(D^0)$ (MeV)', 'd0_dpz' :r'Conservation $p_z(D^0)$ (MeV)', 'd0_dpe' :r'Conservation $E(D^0)$ (MeV)',} for i in range(xi.shape[1]): if filenames[i] not in ['ks_dpe']: continue fitted = xi[:, i] - xi_gen[:, i] unfitted = xi0[:, i] - xi_gen[:, i] for _ in range(5): fit_mean, fit_std = np.mean(fitted), np.std(fitted) fitted = fitted[np.abs(fitted - fit_mean) < 5.*fit_std] unfit_mean, unfit_std = np.mean(unfitted), np.std(unfitted) unfitted = unfitted[np.abs(unfitted - unfit_mean) < 5.*unfit_std] fig, ax = plt.subplots(figsize=(4, 3)) # plt.figure(figsize=(4,3)) # ax.figure() if len(fitted) != 0: plt.errorbar(*make_hist(fitted, density=True), linestyle='none', marker='.', markersize=4, label='after fit') if 1e-1 > (fit_std / unfit_std) or (fit_std / unfit_std) > 1e1: plt.legend(loc='upper right') plt.grid() plt.xlabel(labels[filenames[i]], fontsize=16) # textstr = '\n'.join(( # r"$\sigma_{{after}}$ = {:0.3f}".format(fit_std), # r"$\mu_{{after}}$ = {:0.3f}".format(fit_mean), # )) # props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) # ax.text(0.05, 0.95, textstr, transform=ax.transAxes, fontsize=12, # verticalalignment='top', bbox=props) # ax.legend(loc='upper right', fontsize=12) # ax.grid() plt.xlabel(labels[filenames[i]], fontsize=12) plt.tight_layout() pathlib.Path('fig/d_meson/{}'.format(savedir)).mkdir(parents=True, exist_ok=True) plt.savefig('fig/d_meson/{}/fit_{}.pgf'.format(savedir, filenames[i]))
def plot_evlolution_params_d0(xi_full, p3_ks_pip_gen, p3_ks_pim_gen, p3_phi_pip_gen, p3_phi_pim_gen, savedir): iter = -1 for xi in xi_full: iter += 1 ks3 = p3_ks_pip_gen + p3_ks_pim_gen phi3 = p3_phi_pip_gen + p3_phi_pim_gen d03 = ks3 + phi3 eks_gen = energy(MASS_DICT['K0_S'], ks3).reshape(-1, 1) ephi_gen = energy(MASS_DICT['phi'], phi3).reshape(-1, 1) ed0_gen = energy(MASS_DICT['D0'], d03).reshape(-1, 1) xi_gen = np.hstack((p3_ks_pip_gen, p3_ks_pim_gen, eks_gen, ks3, p3_phi_pip_gen, p3_phi_pim_gen, ephi_gen, phi3, ed0_gen, d03)) if (savedir.split('/')[0] == 'reffit'): xi = np.hstack((xi[:, 0:10], xi[:,15:25], xi[:,30:34])) # xi0 = np.hstack((xi0[:, 0:10], xi0[:,15:25], xi0[:,30:34])) def augment(xi): ks_pip_p = np.sqrt(np.sum(xi[:, 0:3]**2, axis=-1)).reshape(-1, 1) ks_pim_p = np.sqrt(np.sum(xi[:, 3:6]**2, axis=-1)).reshape(-1, 1) ks_p = np.sqrt(np.sum(xi[:, 7:10]**2, axis=-1)).reshape(-1, 1) ks_m = np.sqrt(xi[:, 6]**2 - np.sum(xi[:, 7:10]** 2, axis=-1)).reshape(-1, 1) phi_pip_p = np.sqrt(np.sum(xi[:, 10:13]**2, axis=-1)).reshape(-1, 1) phi_pim_p = np.sqrt(np.sum(xi[:, 13:16]**2, axis=-1)).reshape(-1, 1) phi_p = np.sqrt(np.sum(xi[:, 17:20]**2, axis=-1)).reshape(-1, 1) phi_m = np.sqrt(xi[:, 16]**2 - np.sum(xi[:, 17:20]** 2, axis=-1)).reshape(-1, 1) d0_p = np.sqrt(np.sum(xi[:, 21:24]**2, axis=-1)).reshape(-1, 1) d0_m = np.sqrt(xi[:, 20]**2 - np.sum(xi[:, 21:24]** 2, axis=-1)).reshape(-1, 1) ks_dpx = (xi[:, 0] + xi[:, 3] - xi[:, 7]).reshape(-1, 1) ks_dpy = (xi[:, 1] + xi[:, 4] - xi[:, 8]).reshape(-1, 1) ks_dpz = (xi[:, 2] + xi[:, 5] - xi[:, 9]).reshape(-1, 1) ks_dpe = (energy(MASS_DICT['pi+'], xi[:, 0:3]) + energy(MASS_DICT['pi+'], xi[:, 3:6]) - xi[:, 6]).reshape(-1, 1) phi_dpx = (xi[:, 10] + xi[:, 13] - xi[:, 17]).reshape(-1, 1) phi_dpy = (xi[:, 11] + xi[:, 14] - xi[:, 18]).reshape(-1, 1) phi_dpz = (xi[:, 12] + xi[:, 15] - xi[:, 19]).reshape(-1, 1) phi_dpe = (energy(MASS_DICT['pi+'], xi[:, 10:13]) + energy(MASS_DICT['pi+'], xi[:, 13:16]) - xi[:, 16]).reshape(-1, 1) d0_dpx = (xi[:, 7] + xi[:, 17] - xi[:, 21]).reshape(-1, 1) d0_dpy = (xi[:, 8] + xi[:, 18] - xi[:, 22]).reshape(-1, 1) d0_dpz = (xi[:, 9] + xi[:, 19] - xi[:, 23]).reshape(-1, 1) d0_dpe = (xi[:, 6] + xi[:, 16] - xi[:, 20]).reshape(-1, 1) return np.hstack((xi, ks_pip_p, ks_pim_p, ks_p, ks_m, phi_pip_p, phi_pim_p, phi_p, phi_m, d0_p, d0_m, ks_dpx, ks_dpy, ks_dpz, ks_dpe, phi_dpx, phi_dpy, phi_dpz, phi_dpe, d0_dpx, d0_dpy, d0_dpz, d0_dpe)) xi = augment(xi) # xi0 = augment(xi0) xi_gen = augment(xi_gen) filenames = ['ks_pip_px', 'ks_pip_py', 'ks_pip_pz', 'ks_pim_px', 'ks_pim_py', 'ks_pim_pz', 'ks_E', 'ks_px', 'ks_py', 'ks_pz', 'phi_pip_px', 'phi_pip_py', 'phi_pip_pz', 'phi_pim_px', 'phi_pim_py', 'phi_pim_pz', 'phi_E', 'phi_px', 'phi_py', 'phi_pz', 'd0_E', 'd0_px', 'd0_py', 'd0_pz', 'ks_pip_p', 'ks_pim_p', 'ks_p', 'ks_m', 'phi_pip_p', 'phi_pim_p', 'phi_p', 'phi_m', 'd0_p', 'd0_m', 'ks_dpx', 'ks_dpy', 'ks_dpz', 'ks_dpe', 'phi_dpx', 'phi_dpy', 'phi_dpz', 'phi_dpe', 'd0_dpx', 'd0_dpy', 'd0_dpz', 'd0_dpe', ] labels = { 'ks_pip_px':r'$p_x(\pi^+_{K_S^0})$ (MeV)', 'ks_pip_py':r'$p_y(\pi^+_{K_S^0})$ (MeV)', 'ks_pip_pz':r'$p_z(\pi^+_{K_S^0})$ (MeV)', 'ks_pip_p' :r'$p(\pi^+_{K_S^0})$ (MeV)', 'ks_pim_px':r'$p_x(\pi^-_{K_S^0})$ (MeV)', 'ks_pim_py':r'$p_y(\pi^-_{K_S^0})$ (MeV)', 'ks_pim_pz':r'$p_z(\pi^-_{K_S^0})$ (MeV)', 'ks_pim_p' :r'$p(\pi^-_{K_S^0})$ (MeV)', 'ks_E' :r'$E(K_S^0)$ (MeV)', 'ks_px' :r'$p_x(K_S^0)$ (MeV)', 'ks_py' :r'$p_y(K_S^0)$ (MeV)', 'ks_pz' :r'$p_z(K_S^0)$ (MeV)', 'ks_p' :r'$p(K_S^0)$ (MeV)', 'ks_m' :r'$m(K_S^0)$ (MeV)', 'ks_dpx' :r'Conservation $p_x(K_S^0)$ (MeV)', 'ks_dpy' :r'Conservation $p_y(K_S^0)$ (MeV)', 'ks_dpz' :r'Conservation $p_z(K_S^0)$ (MeV)', 'ks_dpe' :r'Conservation $E(K_S^0)$ (MeV)', 'phi_pip_px':r'$p_x(\pi^+_{\phi})$ (MeV)', 'phi_pip_py':r'$p_y(\pi^+_{\phi})$ (MeV)', 'phi_pip_pz':r'$p_z(\pi^+_{\phi})$ (MeV)', 'phi_pip_p' :r'$p(\pi^+_{\phi})$ (MeV)', 'phi_pim_px':r'$p_x(\pi^-_{\phi})$ (MeV)', 'phi_pim_py':r'$p_y(\pi^-_{\phi})$ (MeV)', 'phi_pim_pz':r'$p_z(\pi^-_{\phi})$ (MeV)', 'phi_pim_p' :r'$p(\pi^-_{\phi})$ (MeV)', 'phi_E' :r'$E(\phi)$ (MeV)', 'phi_px' :r'$p_x(\phi)$ (MeV)', 'phi_py' :r'$p_y(\phi)$ (MeV)', 'phi_pz' :r'$p_z(\phi)$ (MeV)', 'phi_p' :r'$p(\phi)$ (MeV)', 'phi_m' :r'$m(\phi)$ (MeV)', 'phi_dpx' :r'Conservation $p_x(\phi)$ (MeV)', 'phi_dpy' :r'Conservation $p_y(\phi)$ (MeV)', 'phi_dpz' :r'Conservation $p_z(\phi)$ (MeV)', 'phi_dpe' :r'Conservation $E(\phi)$ (MeV)', 'd0_E' :r'$p_x(D^0)$ (MeV)', 'd0_px' :r'$p_x(D^0)$ (MeV)', 'd0_py' :r'$p_y(D^0)$ (MeV)', 'd0_pz' :r'$p_z(D^0$ (MeV)', 'd0_p' :r'$p(D^0)$ (MeV)', 'd0_m' :r'$m(D^0)$ (MeV)', 'd0_dpx' :r'Conservation $p_x(D^0)$ (MeV)', 'd0_dpy' :r'Conservation $p_y(D^0)$ (MeV)', 'd0_dpz' :r'Conservation $p_z(D^0)$ (MeV)', 'd0_dpe' :r'Conservation $E(D^0)$ (MeV)',} for i in [33,]:#range(xi.shape[1]): fitted = xi[:, i] - xi_gen[:, i] # unfitted = xi0[:, i] - xi_gen[:, i] for _ in range(5): fit_mean, fit_std = np.mean(fitted), np.std(fitted) fitted = fitted[np.abs(fitted - fit_mean) < 5.*fit_std] # unfit_mean, unfit_std = np.mean(unfitted), np.std(unfitted) # unfitted = unfitted[np.abs(unfitted - unfit_mean) < 5.*unfit_std] # plt.figure(figsize=(8, 6)) # if 1e-1 > (fit_std / unfit_std) or (fit_std / unfit_std) > 1e1: # plt.subplot(1, 2, 1) if len(fitted) != 0: if fit_std > 1e-3: plt.errorbar(*make_hist(fitted, range=[-0.1, 0.1], density=True), linestyle='none', marker='.', markersize=4, label='fit') # if 1e-1 > (fit_std / unfit_std) or (fit_std / unfit_std) > 1e1: plt.plot([], [], ' ', label=r"$\sigma_{{fit}}$ {:0.3f}".format(fit_std)) # plt.plot([], [], ' ', label=r"$\sigma_{{unfit}}$ {:0.3f}".format(unfit_std)) plt.plot([], [], ' ', label=r"$\mu_{{fit}}$ {:0.3f}".format(fit_mean)) # plt.plot([], [], ' ', label=r"$\mu_{{unfit}}$ {:0.3f}".format(unfit_mean)) plt.legend(loc='upper right') plt.grid() plt.xlabel(labels[filenames[i]], fontsize=16) # plt.subplot(1, 2, 2) # if len(unfitted) != 0: # plt.errorbar(*make_hist(unfitted, density=True), # linestyle='none', marker='.', markersize=4, label='unfit') # plt.plot([], [], ' ', label=r"$\sigma_{{fit}}$ {:0.3f}".format(fit_std)) # plt.plot([], [], ' ', label=r"$\sigma_{{unfit}}$ {:0.3f}".format(unfit_std)) # plt.plot([], [], ' ', label=r"$\mu_{{fit}}$ {:0.3f}".format(fit_mean)) # plt.plot([], [], ' ', label=r"$\mu_{{unfit}}$ {:0.3f}".format(unfit_mean)) plt.legend(loc='upper right') plt.grid() plt.xlabel("Evolution: {} {}, iter: {}".format(labels[filenames[i]], savedir, iter), fontsize=16) plt.tight_layout() # pathlib.Path('fig/d_meson/{}'.format(savedir)).mkdir(parents=True, exist_ok=True) # plt.savefig('fig/d_meson/{}/evolution_{}.png'.format(savedir, filenames[i])) plt.show()