def make_histogram(image, filename, numbins=32): width, height = image.size data = [] for i in range(width): for j in range(height): pixel = image.getpixel((i,j)) data.append(pixel) p = Plot() hist = Histogram(data, numbins) p.append(hist) p.write(filename)
def plotmixing(samples, param_name, filename=None): p = Plot(title='%s mixing plot' % param_name) points = Points([(i,s[param_name]) for i,s in enumerate(samples)], style='lines') points.linewidth=1 p.append(points) p.show() if filename: p.write(filename)
def do_iris_HAC(): numvars, names, data, labels = read_data('iris.cluster.txt') DE = HAC(data, .1) data = [] for grouping in DE: if grouping[0] != 0: K = grouping[2] K.compute_means() data.append((grouping[1], K.error())) print grouping[0], grouping[1], K.error() for cluster in K.clusters: cluster.indices.sort() print cluster.indices plot = Plot() plot.title = 'SSE as a function of number of clusters in HAC' plot.append(Points(data, style='lines')) plot.write('hac_clusters.gpi')
from psodata import PSOData from evilplot import Plot, Points, RawData MAX_BAR_SAMPLES = 40 MAX_SAMPLES = 500 parser = optparse.OptionParser() parser.add_option('--print', dest='print_page', action='store_true', help='Send to the printer') opts, args = parser.parse_args() if not args: parser.error('Log file not specified.') plot = Plot() plot.ylogscale = 10 plot.xlabel = 'Function Evaluations' plot.ylabel = 'Best Function Value' for filename in args: data = PSOData(open(filename)) trim = int(len(data) / 10) points = [] bars = [] iterations = len(data[0]) samples_step = int(math.ceil(iterations / MAX_SAMPLES)) bar_samples_step = int(math.ceil(iterations / MAX_BAR_SAMPLES)) for iteration in islice(data[0], 0, None, samples_step): points.append((iteration, data.average(iteration))) for iteration in islice(data[0], 0, None, bar_samples_step):
def plotposterior(samples, param_name, min=None, max=None, prior=None, filename=None): p = Plot(title='Posterior of %s' % param_name) density = Density([s[param_name] for s in samples], title='Posterior') p.append(density) if prior: priord = Function(prior, title='Prior') p.append(priord) if min is not None: p.xmin = min if max is not None: p.xmax = max p.show() if filename: p.write(filename)
def main(): tm_results = parse_file('with_topic_model.log') ntm_results = parse_file('without_topic_model.log') p = Plot(title="Precision/Recall for Labeled Mentions") p.xmin = 0 p.xmax = 1 p.ymin = 0 p.ymax = 1 p.append(Points(tm_results[0].prec_rec, style='lines', title='With topic model')) p.append(Points(ntm_results[4].prec_rec, style='lines', title='Without topic model')) p.append(Points(tm_results[14].prec_rec, style='lines', title='With topic model after sampling')) p.append(Points(ntm_results[14].prec_rec, style='lines', title='Without topic model after sampling')) p.append(Points([(tm_results[0].baseline_rec, tm_results[0].baseline_prec)], title='Baseline performance')) p.write('prec_rec.gpi') p.show()