Example #1
0
 def __init__(self):
     self.logger = utils.getLogger()
     self.num_genomes = 0
     """metrics to compare different containers"""
     self.max_quality = -np.inf
     self.min_quality = np.inf
     self.total_quality = 0
	def __init__(self,env,genome_constructor,batch_size,seed=1):
		self.env = env
		self.genome_constructor = genome_constructor
		self.batch_size = batch_size
		self.seed = seed
		self.logger = utils.getLogger()
		self.current_iteration = 1
Example #3
0
 def __init__(self, parameters=None, seed=1):
     self.logger = utils.getLogger()
     if (parameters == None):
         self.parameters = self.sample_random_genome()
     else:
         self.parameters = parameters
     self.seed = seed
     ## Set random number seed for all scipy and numpy operations so that experiments can be reproduced
     np.random.seed(seed=seed)
from mpi4py import MPI
from evo_rbc.env.prosthetic_env import ProstheticEAEnv
import evo_rbc.main.utils as test_utils

logger = test_utils.getLogger()

comm = MPI.Comm.Get_parent()
size = comm.Get_size()
rank = comm.Get_rank()

genomes_matrix = visualise = max_time_steps_qd = joint_error_margin = None

max_time_steps_qd = comm.bcast(max_time_steps_qd, root=0)

# print("child spawned and running",rank)

genomes = comm.scatter(genomes_matrix, root=0)

visualise = comm.bcast(visualise, root=0)

joint_error_margin = comm.bcast(joint_error_margin, root=0)

env = ProstheticEAEnv(max_time_steps_qd=max_time_steps_qd,
                      joint_error_margin=joint_error_margin)
qd_function = env.qd_steady_runner

# print("visualise",visualise,rank)
qd_evaluations = []
for i in range(len(genomes)):
    behavior, quality = env.evaluate_quality_diversity_fitness(
        qd_function=qd_function,
Example #5
0
 def __setstate__(self, state):
     for k, v in state.items():
         self.__dict__[k] = v
     self.logger = utils.getLogger()
Example #6
0
 def __init__(self):
     self.logger = utils.getLogger()