Example #1
0
def main(n_particles=100, T=250):

    ts, xs, ys = load_generated_traj()
    apf = make_apf_obj()

    res = apf.run(
        n_particles,
        ys,
    )

    xs_apf = res['xts']
    aidx_apf = res['aidxs']

    long_res = to_long_format(
        xs_apf,
        aidx_apf,
        T=T,
    )

    fig, ax = visualize_genealogy(**long_res, window=5)

    odir = osp.join(osp.dirname(osp.dirname(osp.abspath(__name__))), 'res')

    if not osp.exists(odir):
        mkdir(odir)

    fig.savefig(osp.join(odir, 'ex2-gen-exe.png'))
Example #2
0
def main(n_particles = 100, T = 250):

    odir = osp.join(osp.dirname(osp.dirname(osp.abspath(__name__))),'res')

    if not osp.exists(odir):
        mkdir(odir)

    ts, xs, ys = load_generated_traj()
    apf = make_apf_obj()

    res_wess = apf.run(n_particles,
                       ys,
                       resampler = 'systematic',
                       adaptive_resampling = True)

    xs_apf_wess,_,aidxs_apf_wess,ness_wess = res_wess.values()

    fig_ness,ax_ness = visualize_ness_comp(ness_wess,n_particles)

    fig_ness.savefig(osp.join(odir,'ex2-ness-comp.png'))


    n_uni_wess = get_unique_primary_ancestors(aidxs_apf_wess)

    long_res = to_long_format(xs_apf_wess,
                              aidxs_apf_wess,
                              T = T,
                              )

    fig_gen, ax_gen = visualize_genealogy(**long_res,
                                          window = 5,
                                          xs_true = xs,)

    fig_gen.savefig(osp.join(odir,'ex2-gen-exg.png'))
Example #3
0
def main(n_particles=100, T=250):

    odir = osp.join(osp.dirname(osp.dirname(osp.abspath(__name__))), 'res')

    if not osp.exists(odir):
        mkdir(odir)

    ts, xs, ys = load_generated_traj()
    apf = make_apf_obj()

    res_sys = apf.run(n_particles, ys, resampler='systematic')

    xs_apf_sys = res_sys['xts']
    aidxs_apf_sys = res_sys['aidxs']

    res_mult = apf.run(n_particles, ys, resampler='multinomial')

    xs_apf_mult = res_mult['xts']
    aidxs_apf_mult = res_mult['aidxs']

    n_uni_sys = get_unique_primary_ancestors(aidxs_apf_sys)
    n_uni_mult = get_unique_primary_ancestors(aidxs_apf_mult)

    fig_uni, ax_uni = visualize_diveristy(n_uni_sys,
                                          n_uni_mult,
                                          labels=['systematic', 'multinomial'])

    fig_uni.savefig(osp.join(odir, 'ex2-sys-vs-mult.png'))

    long_res = to_long_format(
        xs_apf_sys,
        aidxs_apf_sys,
        T=T,
    )

    fig_gen, ax_gen = visualize_genealogy(**long_res, window=5)

    fig_gen.savefig(osp.join(odir, 'ex2-gen-exf.png'))
Example #4
0
def main():
    ts, xs, ys = load_generated_traj()
    KF = make_kf_obj()
    xs_kf, ps_kf = KF.estimate_traj(ys, T=ts[-1] + 1)

    _, Nsm, diff_bpf_mu, diff_bpf_var = load_bpf_results()

    apf = make_apf_obj()

    mu_results = {}
    var_results = {}
    table_results = np.zeros((Nsm.shape[0], 2))

    for k, n_particles in enumerate(Nsm):

        res = apf.run(n_particles, ys)

        xs_apf = res['xts']
        aidxs_apf = res['aidxs']

        mu = np.sum(xs_apf * res['weights'], axis=1)
        var = np.sum(res['weights'] * (xs_apf - mu.reshape(-1, 1))**2, axis=1)

        #mu = xs_apf.mean(axis = 1)
        #var = xs_apf.var(axis = 1)

        mu_diff = np.abs(mu - xs_kf)
        var_diff = np.abs(var - ps_kf)

        table_results[k, 0] = np.mean(mu_diff)
        table_results[k, 1] = np.mean(var_diff)

        mu_results.update({'mu_' + str(n_particles): mu_diff})
        var_results.update({'var_' + str(n_particles): var_diff})

    odir = osp.join(osp.dirname(osp.dirname(osp.abspath(__name__))), 'res')

    if not osp.exists(odir):
        mkdir(odir)

    comp_fig, comp_ax = visualize_difference_comp(
        bpf_mu=diff_bpf_mu.mean(axis=0),
        bpf_var=diff_bpf_var.mean(axis=0),
        apf_mu=table_results[:, 0],
        apf_var=table_results[:, 1],
        ns=Nsm)

    comp_fig.savefig(osp.join(odir, 'ex2-comp-bpf-apf.png'))

    table_results = pd.DataFrame(table_results,
                                 index=Nsm,
                                 columns=['Mean', 'Variance'])

    mu_results = pd.DataFrame(mu_results, index=ts)
    var_results = pd.DataFrame(var_results, index=ts)

    mu_results.to_csv(osp.join(odir, 'ex2-mu-difference-apf.tsv'),
                      sep='\t',
                      header=True,
                      index=True)

    var_results.to_csv(osp.join(odir, 'ex2-var-difference-apf.tsv'),
                       sep='\t',
                       header=True,
                       index=True)

    with open(osp.join(odir, 'ex2-stat-mean-table-apf.tex'), 'w+') as fopen:
        ltx = table_results.to_latex(index=True,
                                     bold_rows=True,
                                     column_format='c|c|c')

        ltx = ltx.replace('\\\\', '\\\\ \n \\hline')
        fopen.writelines(ltx)
Example #5
0
def main():
    ts, xs, ys = load_generated_traj()

    xt_xtm1 = lambda xtm1: st.norm(0.8 * xtm1, np.sqrt(0.5))
    yt_xt = lambda xt: st.norm(2 * xt, np.sqrt(0.1))
    x0 = st.norm(0, np.sqrt(2))

    KF = make_kf_obj()

    xs_kf, ps_kf = KF.estimate_traj(ys, T=ts[-1] + 1)

    bspf = BSPF(
        xt_xtm1_dist=xt_xtm1,
        yt_xt_dist=yt_xt,
        x0_dist=x0,
    )

    ns = np.array([10, 50, 100, 2000, 5000]).astype(int)
    mu_results = {}
    var_results = {}
    table_results = np.zeros((ns.shape[0], 2))

    width = ns.shape[0] * 3 + 0.4
    height = 2 * 3 + 0.4

    fig, ax = plt.subplots(2,
                           ns.shape[0],
                           sharey='row',
                           figsize=(width, height))

    for aa in ax.flatten():
        aa.yaxis.set_tick_params(labelleft=True)

    for k, n in enumerate(ns):
        res = bspf.run(ys, n)

        mu = np.sum(res['xs'] * res['weights'], axis=0)
        var = np.sum(res['weights'] * (res['xs'] - mu)**2, axis=0)

        mu_diff = np.abs(mu - xs_kf)
        var_diff = np.abs(var - ps_kf)

        table_results[k, 0] = np.mean(mu_diff)
        table_results[k, 1] = np.mean(var_diff)

        mu_results.update({'mu_' + str(n): mu_diff})
        var_results.update({'var_' + str(n): var_diff})

        ax[0, k].plot(ts[1::], mu_diff[1::], color='black')
        ax[1, k].plot(ts[1::], var_diff[1::], color='black')

        ax[0, k].set_ylabel(r'$|\mu_{KF}-\mu_{PF}|$')
        ax[1, k].set_ylabel(r'$|\mathrm{Var}_{KF}-\mathrm{Var}_{PF}|$')
        ax[0, k].set_xlabel('Time')
        ax[1, k].set_xlabel('Time')
        ax[0, k].set_title(f"{n} Particles")

        for pos in ['top', 'right']:
            for r in range(ax.shape[0]):
                ax[r, k].spines[pos].set_visible(False)

    odir = osp.join(osp.dirname(osp.dirname(osp.abspath(__name__))), 'res')

    if not osp.exists(odir):
        mkdir(odir)

    fig.savefig(osp.join(odir, 'ex2-kalman-vs-pf.png'))

    mu_results = pd.DataFrame(mu_results, index=ts)
    var_results = pd.DataFrame(var_results, index=ts)
    table_results = pd.DataFrame(table_results,
                                 index=ns,
                                 columns=['Mean', 'Variance'])

    mu_results.to_csv(osp.join(odir, 'ex2-mu-difference-bpf.tsv'),
                      sep='\t',
                      header=True,
                      index=True)
    var_results.to_csv(osp.join(odir, 'ex2-var-difference-bpf.tsv'),
                       sep='\t',
                       header=True,
                       index=True)

    with open(osp.join(odir, 'ex2-stat-mean-table.tex'), 'w+') as fopen:
        ltx = table_results.to_latex(index=True,
                                     bold_rows=True,
                                     column_format='c|c|c')
        ltx = ltx.replace('\\\\', '\\\\ \n \\hline')
        fopen.writelines(ltx)