def get_data(f): lines = io.open(f, 'r', encoding='utf-8').readlines() examples = [] for i in lines: s1 = i.split("\t")[0].lower() s2 = i.split("\t")[1].lower() e = (example(s1), example(s2)) examples.append(e) shuffle(examples) return examples
def get_data(f): lines = json.load(open(f, 'r')) examples = [] for i in lines: #s1 = i.split("\t")[0].lower() #s2 = i.split("\t")[1].lower() e = (example(i["orig"]), example(i["para"]), example(i["neg_orign"]), example(i["neg_para"])) examples.append(e) shuffle(examples) return examples
def get_seqs(p1, p2, words, params): p1 = example(p1) p2 = example(p2) if params.wordtype == "words": p1.populate_embeddings(words, True) p2.populate_embeddings(words, True) else: p1.populate_embeddings_ngrams(words, 3, True) p2.populate_embeddings_ngrams(words, 3, True) return p1.embeddings, p2.embeddings
def get_data(f): data = open(f, 'r') lines = data.readlines() examples = [] for i in lines: i = i.strip() if (len(i) > 0): i = i.split('\t') if len(i) == 2: e = (example(i[0]), example(i[1])) examples.append(e) else: print i return examples
def getSimiDataset(filename): data = open(filename, 'r') lines = data.readlines() examples = [] for i in lines: i = i.strip() if (len(i) > 0): i = i.split('\t') if len(i) == 3: e = (example(i[0]), example(i[1]), float(i[2])) examples.append(e) else: print i return examples
def jsonFile(): data = request.get_json() Index = data.get("Review") my_list = [] for person in data["Review"]: my_list.append(person["review"]) # for i in my_list: # print("HELLO") # print(i) ex = example() score, review_index = ex.predict(my_list, data_text) # score_list = [score, my_list[review_index]] appended_string = str(score[0]) + "Txix+T-xixT" + str( my_list[review_index]) # score.append(review) print(score[0]) print(type(score)) # return str(score_list) return appended_string
def get_data(params): lines = io.open(params.data, 'r', encoding='utf-8').readlines() scores = {} random.shuffle(lines) for i in lines: i = i.lower() i = i.split("\t") score = float(i[2]) idx = i[3] if idx not in scores and score <= params.max_value and score >= params.min_value: ex = (example(i[0]), example(i[1])) scores[idx] = ex data = [] for i in scores: data.append(scores[i]) return data
def input_examples(dataset): examples = [] i = 0 for x_s, y_s in zip(dataset.features, dataset.labels): exm = example.example(id=i, x_s=x_s, y_s=y_s) examples.append(exm) i += 1 return examples
def generate_examples(Statements, Queries): examples = [] for story_id in xrange(max(Statements.story_id)): ss = Statements[Statements.story_id == story_id] qs = Queries[Queries.story_id == story_id] for _, q in qs.iterrows(): statements = ss[ss.line_id < q.line_id].statement.values question = q.query answer = q.answer hints = map(int, q.support_line.split()) examples.append(example.example(statements, question, answer, hints)) return examples
def generate_examples(Statements, Queries): examples = [] for story_id in xrange(max(Statements.story_id)): ss = Statements[Statements.story_id == story_id] qs = Queries[Queries.story_id == story_id] for _, q in qs.iterrows(): statements = ss[ss.line_id < q.line_id].statement.values question = q.query answer = q.answer hints = map(int, q.support_line.split()) examples.append( example.example(statements, question, answer, hints)) return examples
def get_data(params): lines = io.open(params.data, 'r', encoding='utf-8').readlines() d = {} data = [] idx = 0 for i in lines: i = i.strip() if len(i) == 0: continue i = i.split('\t') if len(i) == 1: d[idx] = (i[0], []) idx += 1 else: d[idx - 1] = (d[idx - 1][0], d[idx - 1][1] + [i[0]]) for i in d.items(): r = i[1][0] trans = i[1][1] r = example(r) trans = [example(j) for j in trans] data.append((i[0], r, trans)) train = [] test = [] val = [] for i in data: idx, r, t = i if idx < 40000: train.append((i[1], i[2])) elif idx < 45000: val.append((i[1], i[2])) elif idx < 50000: test.append((i[1], i[2])) return train, val, test
def test_example_fail(self): e = example() self.assertEqual(e.myfunc(), 4)
def test_example_pass(self): e = example() self.assertEqual(e.myfunc(), 5)
import numpy as np import example from six import print_ if __name__ == "__main__": x = np.random.rand(20).reshape(5, 4) print_(example.example(x))
import numpy as np import example if __name__ == "__main__": x = np.random.rand(20).reshape(5, 4) print example.example(x)
def response(): # fname = request.form.get("q") fname = request.args.get("q") ex1 = example(fname) # return render_template('index.html', message = ex1) return ex1
def main(targets): ''' Runs the main project pipeline logic, given the targets. targets must contain: 'data', 'analysis', 'model'. `main` runs the targets in order of data=>analysis=>model. ''' if 'all' in targets: with open('config/data-params.json') as fh: data_cfg = json.load(fh) get_data(**data_cfg) with open('config/eda-params.json') as fh: eda_cfg = json.load(fh) do_eda(**eda_cfg) with open('config/auto-params.json') as fh: auto_cfg = json.load(fh) autophrase(**auto_cfg) with open('config/visual-params.json') as fh: visual_cfg = json.load(fh) visual(**visual_cfg) with open('config/example-params.json') as fh: example_cfg = json.load(fh) example(**example_cfg) if 'test' in targets: with open('config/data-params-test.json') as fh: data_cfg = json.load(fh) get_data(**data_cfg) with open('config/eda-params-test.json') as fh: eda_cfg = json.load(fh) do_eda(**eda_cfg) with open('config/auto-params-test.json') as fh: auto_cfg = json.load(fh) autophrase(**auto_cfg) with open('config/visual-params-test.json') as fh: visual_cfg = json.load(fh) visual(**visual_cfg) if 'data' in targets: with open('config/data-params.json') as fh: data_cfg = json.load(fh) get_data(**data_cfg) if 'eda' in targets: with open('config/eda-params.json') as fh: eda_cfg = json.load(fh) do_eda(**eda_cfg) if 'auto' in targets: with open('config/auto-params.json') as fh: auto_cfg = json.load(fh) autophrase(**auto_cfg) if 'visual' in targets: with open('config/visual-params.json') as fh: visual_cfg = json.load(fh) visual(**visual_cfg) if 'example' in targets: with open('config/example-params.json') as fh: visual_cfg = json.load(fh) visual(**visual_cfg) return
import example data_count = 3 example.example(data_count)
def test_main(self, mock_main_show_raw_image): assert example() is None
def get_seqs(p1, p2, ngram_words, word_words, params): if params.combination_type == "ngram-word": np1 = example(p1) np2 = example(p2) wp1 = example(p1) wp2 = example(p2) np1.populate_embeddings_ngrams(ngram_words, 3, True) np2.populate_embeddings_ngrams(ngram_words, 3, True) wp1.populate_embeddings(word_words, True) wp2.populate_embeddings(word_words, True) return np1.embeddings, wp1.embeddings, np2.embeddings, wp2.embeddings elif params.combination_type == "ngram-lstm": np1 = example(p1) np2 = example(p2) wp1 = example(p1) wp2 = example(p2) np1.populate_embeddings_ngrams(ngram_words, 3, True) np2.populate_embeddings_ngrams(ngram_words, 3, True) wp1.populate_embeddings(word_words, True) wp2.populate_embeddings(word_words, True) return np1.embeddings, wp1.embeddings, np2.embeddings, wp2.embeddings elif params.combination_type == "word-lstm": np1 = example(p1) np2 = example(p2) wp1 = example(p1) wp2 = example(p2) np1.populate_embeddings(word_words, True) np2.populate_embeddings(word_words, True) wp1.populate_embeddings(word_words, True) wp2.populate_embeddings(word_words, True) return np1.embeddings, wp1.embeddings, np2.embeddings, wp2.embeddings elif params.combination_type == "ngram-word-lstm": np1 = example(p1) np2 = example(p2) wp1 = example(p1) wp2 = example(p2) lp1 = example(p1) lp2 = example(p2) np1.populate_embeddings_ngrams(ngram_words, 3, True) np2.populate_embeddings_ngrams(ngram_words, 3, True) wp1.populate_embeddings(word_words, True) wp2.populate_embeddings(word_words, True) lp1.populate_embeddings(word_words, True) lp2.populate_embeddings(word_words, True) return np1.embeddings, wp1.embeddings, lp1.embeddings, np2.embeddings, wp2.embeddings, lp2.embeddings
from pylab import * from example import example sample_curve_standard = lambda: example(hidden=100, examples=500, epochs=50, eta=0.04, binary=False, embedded=True)[1] sample_curve_binary = lambda: example(hidden=100, examples=500, epochs=50, eta=1, binary=True, embedded=True)[1] N = 10 s_collection = [] b_collection = [] for i in range(N): s_collection.append(sample_curve_standard()) b_collection.append(sample_curve_binary())
import numpy as np import example if __name__ == "__main__": x = np.random.rand(20).reshape(5,4) print example.example(x)
def test_example_useoption(self): e = example() self.assertEqual(str(e.myfunc()), self.options['option-answer'])
def StartUp(self,event): a = example.example("asdf") a.Func()
import numpy as np import example from six import print_ if __name__ == "__main__": x = np.random.rand(20).reshape(5,4) print_(example.example(x))
from pylab import * from example import example sample_curve_standard = lambda: example( hidden=100, examples=500, epochs=50, eta=0.04, binary=False, embedded=True )[1] sample_curve_binary = lambda: example( hidden=100, examples=500, epochs=50, eta=1, binary=True, embedded=True)[1] N = 10 s_collection = [] b_collection = [] for i in range(N): s_collection.append(sample_curve_standard()) b_collection.append(sample_curve_binary())
def test_should_issue_example_message(self): out = mock() example(out) verify(out).write("Python")
def test_example(): '''test output of example''' assert example() == 'this is just an example'
def get_data(lines): examples = [] for i in lines: e = (example(i[0]), example(i[1])) examples.append(e) return examples
def test_variations(variable): assert example(variable)
from pylab import * import example binary = example.example(100, 500, 50, 1, None, True, True, True)[1] standard = {} eta_vals = 10.0**(-arange(25.0)/5.0) for eta in eta_vals: standard[eta] = example.example(100, 500, 50, eta, None, False, True, True)[1]
from pylab import * import example binary = example.example(100, 500, 50, 1, None, True, True, True)[1] standard = {} eta_vals = 10.0**(-arange(25.0) / 5.0) for eta in eta_vals: standard[eta] = example.example(100, 500, 50, eta, None, False, True, True)[1]