#* specific language governing permissions and limitations #* under the License. #* #*************************************************************/ import sys, os sys.path.append(os.path.join(os.path.dirname(__file__),'..')) from singa.model import * from examples.datasets import mnist rbmid = 2 pvalues = {'batchsize' : 100, 'shape' : 784, 'std_value' : 255} X_train, X_test, workspace = mnist.load_data( workspace = 'examples/rbm/rbm2', nb_rbm = rbmid, checkpoint_steps = 6000, **pvalues) m = Energy('rbm'+str(rbmid), sys.argv) out_dim = [1000, 500] m.add(RBM(out_dim, w_std=0.1, b_wd=0)) sgd = SGD(lr=0.1, decay=0.0002, momentum=0.8) topo = Cluster(workspace) m.compile(optimizer=sgd, cluster=topo) m.fit(X_train, alg='cd', nb_epoch=6000) #result = m.evaluate(X_test, test_steps=100, test_freq=500)
#*************************************************************/ import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from singa.model import * from examples.datasets import mnist # Sample parameter values for Mnist MLP example pvalues = { 'batchsize': 64, 'shape': 784, 'random_skip': 5000, 'std_value': 127.5, 'mean_value': 127.5 } X_train, X_test, workspace = mnist.load_data(**pvalues) m = Sequential('mlp', argv=sys.argv) ''' Weight and Bias are initialized by uniform distribution with scale=0.05 at default ''' m.add(Dense(2500, init='uniform', activation='tanh')) m.add(Dense(2000, init='uniform', activation='tanh')) m.add(Dense(1500, init='uniform', activation='tanh')) m.add(Dense(1000, init='uniform', activation='tanh')) m.add(Dense(500, init='uniform', activation='tanh')) m.add(Dense(10, init='uniform', activation='softmax')) sgd = SGD(lr=0.001, lr_type='step') topo = Cluster(workspace) m.compile(loss='categorical_crossentropy', optimizer=sgd, cluster=topo)
#* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY #* KIND, either express or implied. See the License for the #* specific language governing permissions and limitations #* under the License. #* #*************************************************************/ import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from singa.model import * from examples.datasets import mnist rbmid = 4 pvalues = {'batchsize': 100, 'shape': 784, 'std_value': 255} X_train, X_test, workspace = mnist.load_data(workspace='examples/rbm/rbm' + str(rbmid), nb_rbm=rbmid, checkpoint_steps=6000, **pvalues) m = Energy('rbm' + str(rbmid), sys.argv) out_dim = [1000, 500, 250, 30] m.add(RBM(out_dim, sampling='gaussian', w_std=0.1, b_wd=0)) sgd = SGD(lr=0.001, decay=0.0002, momentum=0.8) topo = Cluster(workspace) m.compile(optimizer=sgd, cluster=topo) m.fit(X_train, alg='cd', nb_epoch=6000) #result = m.evaluate(X_test, test_steps=100, test_freq=500)
#* specific language governing permissions and limitations #* under the License. #* #*************************************************************/ import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from singa.model import * from examples.datasets import mnist # Sample parameter values for Autoencoder example rbmid = 4 pvalues = {'batchsize': 100, 'shape': 784, 'std_value': 255} X_train, X_test, workspace = mnist.load_data( workspace='examples/rbm/autoencoder', nb_rbm=rbmid + 1, checkpoint_steps=6000, **pvalues) m = Sequential('autoencoder', sys.argv) hid_dim = [1000, 500, 250, 30] m.add(Autoencoder(hid_dim, out_dim=784, activation='sigmoid', param_share=True)) agd = AdaGrad(lr=0.01) topo = Cluster(workspace) m.compile(loss='mean_squared_error', optimizer=agd, cluster=topo) m.fit(X_train, alg='bp', nb_epoch=12200, with_test=True) result = m.evaluate(X_test, test_steps=100, test_freq=1000)
#* KIND, either express or implied. See the License for the #* specific language governing permissions and limitations #* under the License. #* #*************************************************************/ import sys, os sys.path.append(os.path.join(os.path.dirname(__file__),'..')) from singa.model import * from examples.datasets import mnist # Sample parameter values for Mnist MLP example pvalues = {'batchsize' : 64, 'shape' : 784, 'std_value' : 127.5, 'mean_value' : 127.5} X_train, X_test, workspace = mnist.load_data(**pvalues) m = Sequential('mlp', argv=sys.argv) m.add(Dense(2500, init='uniform', activation='tanh')) m.add(Dense(2000, init='uniform', activation='tanh')) m.add(Dense(1500, init='uniform', activation='tanh')) m.add(Dense(1000, init='uniform', activation='tanh')) m.add(Dense(500, init='uniform', activation='tanh')) m.add(Dense(10, init='uniform', activation='softmax')) sgd = SGD(lr=0.001, lr_type='step') topo = Cluster(workspace) m.compile(loss='categorical_crossentropy', optimizer=sgd, cluster=topo) ''' For doing test only, normally users sets checkpoint path