def test_metalearning(): from mosaic_ml.autosklearn_wrapper.autosklearn import get_autosklearn_metalearning for task in [252, 9971]: X_train, y_train, X_test, y_test, cat = load_task(task) autoML = AutoML(time_budget=60, time_limit_for_evaluation=30, memory_limit=3024, seed=1, scoring_func="balanced_accuracy", verbose=0, ensemble_size=0) intial_configuration_metalearning_AS, _ = get_autosklearn_metalearning( X_train, y_train, cat, "balanced_accuracy", 50) best_config, best_score = autoML.fit( X_train, y_train, X_test, y_test, categorical_features=cat, initial_configurations=intial_configuration_metalearning_AS[:30] ) # init with 30 configs assert best_config is not None assert isinstance(best_score, float)
def test_get_metalearning_AS(): from mosaic_ml.autosklearn_wrapper.autosklearn import get_autosklearn_metalearning for task in classification_tasks[::10]: X_train, y_train, X_test, y_test, cat = load_task(task) initial_configuration_metalearning_AS, list_dataset_NN = get_autosklearn_metalearning( X_train, y_train, cat, "balanced_accuracy", 50) assert len(initial_configuration_metalearning_AS) == len( list_dataset_NN) assert sum([ config is not None for config in initial_configuration_metalearning_AS ]) == len(initial_configuration_metalearning_AS) assert sum([dataset is not None for dataset in list_dataset_NN]) == len(list_dataset_NN)
def test_example(): for task in [252, 9971]: X_train, y_train, X_test, y_test, cat = load_task(task) autoML = AutoML(time_budget=60, time_limit_for_evaluation=30, memory_limit=3024, seed=1, scoring_func="balanced_accuracy", verbose=0 ) best_config, best_score = autoML.fit(X_train, y_train, X_test, y_test, categorical_features=cat) assert best_config is not None assert isinstance(best_score, float)