Example #1
0
def final_expectation_dataset(sq):

    sq.model.eval()
    sq.model = sq.model.module
    sq.model.cpu()
    sq.model.eval()
    print sq.model

    eb.use_eb(True)

    for batch_idx, (sequence, target) in enumerate(sq.exciteloader_train):

        np.save("./data/full_frame_data_2016_orig_trinary/"+str(batch_idx)+"_seq.npy", sequence.numpy())
        np.save("./data/full_frame_data_2016_orig_trinary/"+str(batch_idx)+"_tar.npy", target.numpy())
        continue

        timer_init = time.time()
        picnum = sq.length_of_sequence

        mean=[0.3886, 0.4391, 0.3203]
        std=[0.2294, 0.2396, 0.2175]
        unnormalize = transforms.Normalize(
            mean=[-0.3886/0.2294, -0.4391/0.2396, -0.3203/0.2175],
            std=[1/0.2294, 1/0.2396, 1/0.2175]
        )

        # save sequence and target here


        sequence = Variable(sequence)
        target = Variable(target)

        mylogger.log("Making a prediction")
        output_model = sq.model(sequence)
        print output_model, target
        mylogger.log("Made the prediction")
        pred = output_model.data.max(1)[1]

        prediction = pred.numpy()
        mytarget = target.data.cpu().numpy()

        if prediction != mytarget:
            continue
        
        layer_top = list(sq.model.modules())[0].decoder_to_classifier[6]
        layer_second = list(sq.model.modules())[0].decoder_to_classifier[4]
        target_layer = list(sq.model.modules())[0].features[2] 
        top_dh = torch.zeros(sequence.size()[0], layer_top.out_features)

        for i in range(sequence.size()[0]):
            top_dh[i,mytarget[i][0]] = 1 # ground truth based contrastive signal

        print top_dh

        timer = time.time()
        mylogger.log("Using eb")
        sq.optimizer.zero_grad()
        grad = eb.contrastive_eb(sq.model, sequence, layer_top, layer_second, target=target_layer, top_dh=top_dh)
        mylogger.log("Time void from contrastive EB: {}".format(time.time()-timer))

        print grad.numpy().shape
        grad_ = grad.numpy()[:,:,:,:]
        grad_ = np.mean(grad_,axis=1)

        np.save("./data/full_frame_data_2016_npy_trinary/"+str(batch_idx)+".npy", grad_)

        print time.time()-timer_init
        '''
Example #2
0
def final_expectation(sq):

    sq.model = sq.model.module
    sq.model.cpu()
    sq.model.eval()
    

    eb.use_eb(True)

    for batch_idx, (sequence, target) in enumerate(sq.exciteloader):

        picnum = sq.length_of_sequence

        mean=[0.3886, 0.4391, 0.3203]
        std=[0.2294, 0.2396, 0.2175]
        unnormalize = transforms.Normalize(
            mean=[-0.3886/0.2294, -0.4391/0.2396, -0.3203/0.2175],
            std=[1/0.2294, 1/0.2396, 1/0.2175]
        )

        sequence = Variable(sequence)
        target = Variable(target)

        '''
        mysequence = sequence[0].cpu().data

        for i in range(picnum):
            img = mysequence[i,:,:,:]
            img = unnormalize(img)
            img = img.permute(1,2,0)
            plt.subplot(math.sqrt(picnum),math.sqrt(picnum),i+1)
            plt.imshow(img.numpy())
            plt.draw()
            plt.axis('off')
        plt.show()
        '''

        output_model = sq.model(sequence)
        pred = output_model.data.max(1)[1]
        print(pred)
        print(target)

        if sq.model.decode:
            layer_top = list(sq.model.modules())[0].batch_to_classifier[0]
            layer_second = list(sq.model.modules())[0].final_classifier[1]
            target_layer = list(sq.model.modules())[0].features[2]
        else:
            layer_top = list(sq.model.modules())[0].decoder_to_classifier[3]
            layer_second = list(sq.model.modules())[0].decoder_to_classifier[1]
            target_layer = list(sq.model.modules())[0].features[2]            

        for label_choice in [0,1]:

            top_dh = torch.zeros(1, layer_top.out_features)
            top_dh[0,label_choice] = 1

            # since sequence is a series of images, it does not batch and send one signal but sends multiple signals
            timer = time.time()
            sq.optimizer.zero_grad()
            grad = eb.contrastive_eb(sq.model, sequence, layer_top, layer_second, target=target_layer, top_dh=top_dh)
            #grad = eb.eb(sq.model, sequence, layer_top, target=target_layer, top_dh=top_dh)
            mylogger.log("Time void from contrastive EB: {}".format(time.time()-timer))
            #print(grad)
            #print(torch.max(grad))

            grad_ = grad.numpy()[:,:,:,:]
            grad_ = np.mean(grad_,axis=1)

            mylogger.log(pred)
            mylogger.log(target)

            plt.figure(1)
            for i in range(picnum):
                img = grad_[i,:,:]
                plt.subplot(math.sqrt(picnum),math.sqrt(picnum),i+1)
                plt.imshow(img)
                plt.draw()
                plt.axis('off')
            plt.show()

        mysequence = sequence[0].cpu().data

        for i in range(picnum):
            img = mysequence[i,:,:,:]
            img = unnormalize(img)
            img = img.permute(1,2,0)
            plt.subplot(math.sqrt(picnum),math.sqrt(picnum),i+1)
            plt.imshow(img.numpy())
            plt.draw()
            plt.axis('off')
        plt.show()

        # it kind off works
        exit()   

        pred = output.data.max(1)[1] 
        
        layer_top = list(vp.VGG.modules())[0].classifier[6] # output layer of network
        layer_second = list(vp.VGG.modules())[0].classifier[4]
        target_layer = list(vp.VGG.modules())[0].features[2]

        prediction = pred.cpu().numpy()[0][0]

        # excite the prediction neuron

        #self.mean = [ 0.54005252  ,0.51546471  ,0.48611783]
        #self.std = [ 0.42398592  ,0.4154406   ,0.43313607]
        unnormalize = transforms.Normalize(mean=[-0.53/0.4,-0.50/0.4,-0.47/0.4],std=[1/0.4,1/0.4,1/0.4])
        topil = transforms.ToPILImage()
        chunk_of_tensor = unnormalize(first_image[0])
        img = topil(chunk_of_tensor)

        plt.figure(1)
        plt.subplot(4,4,1)
        plt.title("Prediction: "+str(my_keys[prediction]))
        plt.imshow(img)
        plt.draw()
        plt.axis('off')

        for i in range(30,40):

            top_dh = torch.zeros(1, layer_top.out_features)

            idd = -1
            if i != 37:
                idd = i ; top_dh[0, idd] = 1
            else:
                idd = first_target; top_dh[0, idd] = 1

            grad = eb.contrastive_eb(vp.VGG, datum, layer_top, layer_second ,target=target_layer, top_dh=top_dh)
            
            grad_ = grad.numpy()[0,:,:,:]
            grad_ = np.mean(grad_,axis=0)

            ix = i-28
            # ix from 0 to 8
            plt.subplot(4,4,ix)
            plt.axis('off')
            plt.title("Contrast: "+str(my_keys[idd]))
            plt.imshow(grad_)
            plt.draw()

        plt.show()
def EB_extraction(vp):
    print("EB extraction, 3 levels, sequence and non-sequence")

    for loader in [vp.testloader_acc]:

        vp.model_VGG.eval()

        eb.use_eb(True)

        print("Starting EB extraction")
        print(len(loader))

        counter = 0
        all_examples = 0
        last_video = "-"
        last_batch = 0
        
        n_image = 0
        for batch_idx, (data, target, video_name)  in enumerate(loader):
            
            #if video_name[0] == "2016090800": # already did it before
            #    continue

            if last_video != video_name[0]:
                print("video ", video_name[0])
                last_batch = 0

            last_video = video_name[0]
            if last_batch >= 32:
                continue
            else:
                last_batch += 1

            print(last_batch, batch_idx, video_name[0])

            # remove continue and exit()

            timer = time.time()
            target.squeeze_()
            target = Variable(target)
            data = data[0]
            data = Variable(data)

            #print data.size(), target.size(), video_name

            #features = vp.model_VGG(data)

            
            #print time.time()-timer
            output = vp.model_VGG(data)

            pred = output.data.max(1)[1] 
            all_examples += data.size()[0]
            flat_pred = pred.cpu().numpy().flatten()
            np_target = target.data.cpu().numpy()


            correct = pred.eq(target.data).sum()
            #print(output) # don't even need output

            if correct == 32:
                counter += 1
                print("all correct here")
            else:
                print(correct,"/",32 , "not correct...")
            
            #print time.time()-timer

            layer_top = list(vp.model_VGG.modules())[0].classifier[6] 
            layer_second = list(vp.model_VGG.modules())[0].classifier[4] 
            target_layer = list(vp.model_VGG.modules())[0].features[2] # 3,4,5 or 6
            top_dh = torch.zeros(32,3)

            #print np_target
            for i in range(32):
                top_dh[i,np_target[i]] = 1 # ground truth based contrastive signal
            #print top_dh

            mylogger.log("Using eb")
            grad = eb.contrastive_eb(vp.model_VGG, data, layer_top, layer_second, target=target_layer, top_dh=top_dh)
            mylogger.log("Time void from contrastive EB: {}".format(time.time()-timer))

            #print grad.numpy().shape

            grad_ = grad.numpy()[:,:,:,:]
            grad_ = np.mean(grad_,axis=1)

            prediction = pred.cpu().numpy()
            for j in range(32):
                mytensor = torch.from_numpy(grad_[j]).unsqueeze(0).unsqueeze(0)                
                print(mytensor.size())
                vutils.save_image(mytensor,"./experiments/viewpoint_EB_final_data_proper/sample_"+str(batch_idx).zfill(4)+"_"+str(j+n_image*32).zfill(4)+"_"+str(int(prediction[j]))+".png", normalize=True)
                print(data.size())
                vutils.save_image(data[j].data,"./experiments/viewpoint_EB_final_data_proper/sample_orig_"+str(batch_idx).zfill(4)+"_"+str(j+n_image*32).zfill(4)+"_"+str(int(prediction[j]))+".png", normalize=False)
            

            n_image += 1
            continue


            np.save("./experiments/viewpoint_EB_final_data_proper/"+str(last_batch)+"_"+str(video_name[0])+"_attentions.npy", grad_)
            np.save("./experiments/viewpoint_EB_final_data_proper/"+str(last_batch)+"_"+str(video_name[0])+"_original.npy", data.data.numpy())
            np.save("./experiments/viewpoint_EB_final_data_proper/"+str(last_batch)+"_"+str(video_name[0])+"_targets.npy", target.data.numpy())

            '''
            plt.figure(1)
            for i in range(32):
                img = grad_[i,:,:]
                plt.subplot(6,6,i+1)
                plt.imshow(img)
                plt.draw()
                plt.axis('off')
            plt.show()
            '''
            #print time.time()-timer

            
        print("Correct total sequences from 9128 to ", counter)
def EB_extraction(vp):
    print("EB extraction, 3 levels, sequence and non-sequence")

    for loader in [vp.testloader_acc]:

        vp.model_ED.eval()

        eb.use_eb(True)

        print("Starting EB extraction")
        print(len(loader))

        counter = 0
        all_examples = 0

        for batch_idx, (data, target, video_name) in enumerate(loader):

            timer = time.time()
            target.squeeze_()
            target = Variable(target)
            data = data[0]
            data = Variable(data)

            #print data.size(), target.size(), video_name

            #features = vp.model_VGG(data)

            print time.time() - timer
            output = vp.model_ED(data)

            pred = output.data.max(1)[1]
            all_examples += data.size()[0]
            flat_pred = pred.cpu().numpy().flatten()
            np_target = target.data.cpu().numpy()

            correct = pred.eq(target.data).sum()
            #print(output) # don't even need output

            if correct == 32:
                counter += 1
                print("all correct here")
            else:
                print(correct, "/", 32, "not correct...")

            print time.time() - timer

            layer_top = list(vp.model_ED.modules())[0].classifier[6]
            layer_second = list(vp.model_ED.modules())[0].classifier[4]
            target_layer = list(
                vp.model_ED.modules())[0].features[0]  # 3,4,5 or 6
            top_dh = torch.zeros(32, 3)

            print np_target
            for i in range(32):
                top_dh[
                    i,
                    np_target[i]] = 1  # ground truth based contrastive signal
            print top_dh

            mylogger.log("Using eb")
            grad = eb.contrastive_eb(vp.model_ED,
                                     data,
                                     layer_top,
                                     layer_second,
                                     target=target_layer,
                                     top_dh=top_dh)
            mylogger.log(
                "Time void from contrastive EB: {}".format(time.time() -
                                                           timer))

            print grad.numpy().shape
            grad_ = grad.numpy()[:, :, :, :]
            grad_ = np.mean(grad_, axis=1)

            np.save(
                "./experiments/viewpoint_EB_data/" + str(batch_idx) + "_" +
                str(video_name[0]) + "_attentions.npy", grad_)
            np.save(
                "./experiments/viewpoint_EB_data/" + str(batch_idx) + "_" +
                str(video_name[0]) + "_original.npy", data.data.numpy())
            np.save(
                "./experiments/viewpoint_EB_data/" + str(batch_idx) + "_" +
                str(video_name[0]) + "_targets.npy", target.data.numpy())
            '''
            plt.figure(1)
            for i in range(32):
                img = grad_[i,:,:]
                plt.subplot(6,6,i+1)
                plt.imshow(img)
                plt.draw()
                plt.axis('off')
            plt.show()
            '''
            print time.time() - timer

        print("Correct total sequences from 9128 to ", counter)
Example #5
0
def final_expectation_dataset(pt):

    pt.model.eval()
    pt.model = pt.model.module
    pt.model.cpu()
    pt.model.eval()
    print pt.model

    eb.use_eb(True)
    pt.model.eval()

    for batch_idx, (imgs, play_type, _) in enumerate(pt.exciteloader_train):

        counter = 0
        all_examples = 0
        last_video = "-"
        last_batch = 0

        if batch_idx == len(pt.exciteloader_train) - 1:
            continue

        mypredictions = [0, 0, 0]

        n_image = 0
        for t in range(
                0, int(
                    (imgs.size()[1] - pt.proper_length) / (pt.proper_length))):
            #print(int(imgs.size()[1]/(pt.proper_length/4)), remainder)
            imgs_temp = imgs[:, t * (pt.proper_length):t * (pt.proper_length) +
                             pt.proper_length]
            _temp = _[:][t * (pt.proper_length):t * (pt.proper_length) +
                         pt.proper_length]

            #vutils.save_image(imgs_temp[0],"./myfigure{}.jpg".format(t))

            #print(imgs.size())

            batch_size = play_type.cpu().size()[0]

            play_type_fragment = Variable(play_type,
                                          volatile=True,
                                          requires_grad=False)
            imgs_fragment = Variable(imgs_temp,
                                     volatile=True,
                                     requires_grad=False)

            #print(imgs_temp.size(), imgs.size())

            output = pt.model(imgs_fragment)
            play_type_fragment = play_type_fragment.squeeze(1)

            prediction = output.data.cpu().max(1)[1].numpy()
            prediction = np.squeeze(prediction)

            play_type_target = play_type_fragment.data.cpu().numpy()

            mypredictions[int(prediction)] += 1
            #print("Done for t=",t," and batch id=",batch_idx," and video ", _[t*(pt.proper_length)])

            layer_top = list(pt.model.modules())[0].decoder_to_classifier[6]
            layer_second = list(pt.model.modules())[0].decoder_to_classifier[4]
            target_layer = list(pt.model.modules())[0].features[1]
            top_dh = torch.zeros(imgs.size()[0], layer_top.out_features)

            top_dh[0, play_type_target[
                0]] = 1  # ground truth based contrastive signal
            #print(top_dh)

            #prediction_final = mypredictions.index(max(mypredictions))

            if prediction != play_type_target:
                #print("not a match",prediction, play_type_target, int(prediction), int(play_type_target[0]))
                n_image += 1
                continue
            else:
                pass
                #print(int(prediction),"matched",int(play_type_target[0]))

            imgs_temp = Variable(imgs_temp)
            pt.optimizer.zero_grad()
            grad = eb.contrastive_eb(pt.model,
                                     imgs_temp,
                                     layer_top,
                                     layer_second,
                                     target=target_layer,
                                     top_dh=top_dh)

            print grad.numpy().shape
            grad_ = grad.numpy()[:, :, :, :]
            grad_ = np.mean(grad_, axis=1)

            for j in range(pt.proper_length):
                mytensor = torch.from_numpy(grad_[j]).unsqueeze(0).unsqueeze(0)
                print(mytensor.size())
                vutils.save_image(
                    mytensor,
                    "./experiments/playtype_EB_final_data/sample_" +
                    str(batch_idx).zfill(4) + "_" +
                    str(j + n_image * pt.proper_length).zfill(4) + "_" +
                    str(int(prediction)) + ".png",
                    normalize=True)
                copyfile(
                    str(_temp[j][0]),
                    "./experiments/playtype_EB_final_data/sample_orig_" +
                    str(batch_idx).zfill(4) + "_" +
                    str(j + n_image * pt.proper_length).zfill(4) + "_" +
                    str(int(prediction)) + ".jpg")

            n_image += 1

        continue

        if prediction_final == play_type_target:
            print("CORRECT!", prediction_final, play_type_target)

        exit()

        np.save(
            "./data/full_frame_data_2016_orig_trinary/" + str(batch_idx) +
            "_seq.npy", sequence.numpy())
        np.save(
            "./data/full_frame_data_2016_orig_trinary/" + str(batch_idx) +
            "_tar.npy", target.numpy())
        continue

        timer_init = time.time()
        picnum = sq.length_of_sequence

        mean = [0.3886, 0.4391, 0.3203]
        std = [0.2294, 0.2396, 0.2175]
        unnormalize = transforms.Normalize(
            mean=[-0.3886 / 0.2294, -0.4391 / 0.2396, -0.3203 / 0.2175],
            std=[1 / 0.2294, 1 / 0.2396, 1 / 0.2175])

        # save sequence and target here

        sequence = Variable(sequence)
        target = Variable(target)

        mylogger.log("Making a prediction")
        output_model = sq.model(sequence)
        print output_model, target
        mylogger.log("Made the prediction")
        pred = output_model.data.max(1)[1]

        prediction = pred.numpy()
        mytarget = target.data.cpu().numpy()

        if prediction != mytarget:
            continue

        layer_top = list(sq.model.modules())[0].decoder_to_classifier[6]
        layer_second = list(sq.model.modules())[0].decoder_to_classifier[4]
        target_layer = list(sq.model.modules())[0].features[2]
        top_dh = torch.zeros(sequence.size()[0], layer_top.out_features)

        for i in range(sequence.size()[0]):
            top_dh[i,
                   mytarget[i][0]] = 1  # ground truth based contrastive signal

        print top_dh

        timer = time.time()
        mylogger.log("Using eb")
        sq.optimizer.zero_grad()
        grad = eb.contrastive_eb(sq.model,
                                 sequence,
                                 layer_top,
                                 layer_second,
                                 target=target_layer,
                                 top_dh=top_dh)
        mylogger.log("Time void from contrastive EB: {}".format(time.time() -
                                                                timer))

        print grad.numpy().shape
        grad_ = grad.numpy()[:, :, :, :]
        grad_ = np.mean(grad_, axis=1)

        np.save(
            "./data/full_frame_data_2016_npy_trinary/" + str(batch_idx) +
            ".npy", grad_)

        print time.time() - timer_init