def test_profile(): path = 'results/test/test.pkl' m = KnnClassifier() d = Toy() s = CrossValidation() e = [Accuracy()] p = expConfig(dataset=d, setting=s, model=m, metrics=e, resultPath=path) p.skip_if_file_exist = False p.run() assert os.path.exists(path)
def test_results(): path = 'results/test/test.pkl' m = KnnClassifier() d = Toy() s = CrossValidation() e = [Accuracy()] p = expConfig(dataset=d, setting=s, model=m, metrics=e, resultPath=path) p.skip_if_file_exist = False p.run() r = results(root_dir='results/test') x = r.load() assert_almost_equals(x[0].metrics[0].values[2], 0.8)
args = parser.parse_args() # parse parameters t = args.taskid g = args.num_gpu #------------------------------------------------------------------- # classification models on text for clinical notes #------------------------------------------------------------------- if t == 41: d = ClinicalTS_numeric_combined() s = HoldOut() s.num_GPUs = g e = [Accuracy()] m = RecurrentNN() p = expConfig(dataset=d, setting=s, model=m, metrics=e) p.run() if t == 42: d = ClinicalTS_numeric_combined() s = HoldOut() s.num_GPUs = g e = [Accuracy()] m = FullyConnected() p = expConfig(dataset=d, setting=s, model=m, metrics=e) p.run() #------------------------------------------------------------------- if t == 43: d = ClinicalTS_numeric_sequential() s = HoldOut()
# -*- coding: utf-8 -*- """ Created on Sun Mar 26 17:07:58 2017 @author: YimingZhao """ from modelGlimpseclassifier import Glimpseclassifier from expConfig import expConfig from setting import HoldOut from datasetMNIST import datasetMNIST, datasetMNIST_embed, datasetMNIST3d from metric import Accuracy from Configuration import Configuration_Glimpse AA = Configuration_Glimpse() num = AA.batch_size d = datasetMNIST(n_sample=num) s = HoldOut() e = [Accuracy()] m = Glimpseclassifier(1) path = 'results/test/' + s.name + '/' + d.name + '/' + m.name + '.pkl' p = expConfig(dataset=d, setting=s, model=m, metrics=e, resultPath=path) p.run()