def load_model(model_type='sae', input=None, params_dir=None): params = cPickle.load(open(params_dir)) if model_type == 'rbm': model = RBM(input=input, params=params) else: model = SparseAutoencoder(input=input, params=params) return model
def build_CompressModel(): print 'STEP 1 start...' dataset = Nikkei(dataset_type=params['experiment_type'], brandcode=params['STEP3']['brandcode']) # pdb.set_trace() index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images if params['STEP1']['model'] == 'rbm': model = RBM(input=x, n_visible=dataset.phase1_input_size, n_hidden=params['STEP1']['n_hidden'], reg_weight=params['STEP1']['beta']) train_rbm(input=x, model=model, dataset=dataset, learning_rate=params['STEP1']['learning_rate'], outdir=model_dirs['STEP1']) else: model = SparseAutoencoder(input=x, n_visible=dataset.phase1_input_size, n_hidden=params['STEP1']['n_hidden'], beta=params['STEP1']['beta']) train_sae(input=x, model=model, dataset=dataset, learning_rate=params['STEP1']['learning_rate'], outdir=model_dirs['STEP1'])
def build_CompressModel(): print 'STEP 1 start...' dataset = Nikkei(dataset_type=params['dataset_type'], brandcode=params['STEP3']['brandcode']) # pdb.set_trace() index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images if params['STEP1']['model'] == 'rbm': model = RBM(input=x, n_visible=dataset.phase1_input_size, n_hidden=params['STEP1']['n_hidden'], reg_weight=params['STEP1']['reg_weight'], corruption_level=params['STEP1']['corruption_level']) train_rbm(input=x, model=model, dataset=dataset, learning_rate=params['STEP1']['learning_rate'], outdir=model_dirs['STEP1'], batch_size=params['STEP1']['batch_size']) elif params['STEP1']['model'] == 'sda': sda_params = { 'dataset': dataset, 'hidden_layers_sizes': [params['STEP1']['n_hidden'], params['STEP1']['n_hidden'] / 2], 'pretrain_lr': params['STEP1']['learning_rate'], 'pretrain_batch_size': params['STEP1']['batch_size'], 'pretrain_epochs': 5, 'corruption_levels': [0.5, 0.5], 'k': None, 'y_type': 0, 'sparse_weight': params['STEP1']['reg_weight'] } model = SdA.compress(sda_params) pre_params = get_model_params(model) while (True): try: f_out = open(model_dirs['STEP1'], 'w') f_out.write(cPickle.dumps(model, 1)) f_out.close() break except: pdb.set_trace() else: model = SparseAutoencoder( input=x, n_visible=dataset.phase1_input_size, n_hidden=params['STEP1']['n_hidden'], reg_weight=params['STEP1']['reg_weight'], corruption_level=params['STEP1']['corruption_level']) train_sae(input=x, model=model, dataset=dataset, learning_rate=params['STEP1']['learning_rate'], outdir=model_dirs['STEP1'], batch_size=params['STEP1']['batch_size'])