def do_train(network, param): """Run training. Args: network: network to train param: A dictionary of parameters """ # Load dataset train_data = Dataset(data_type='train', label_type=param['label_type'], train_data_size=param['train_data_size'], batch_size=param['batch_size'], num_stack=param['num_stack'], num_skip=param['num_skip'], is_sorted=True) dev_data_step = Dataset(data_type='dev', label_type=param['label_type'], train_data_size=param['train_data_size'], batch_size=param['batch_size'], num_stack=param['num_stack'], num_skip=param['num_skip'], is_sorted=False) dev_data_epoch = Dataset(data_type='dev', label_type=param['label_type'], train_data_size=param['train_data_size'], batch_size=param['batch_size'], num_stack=param['num_stack'], num_skip=param['num_skip'], is_sorted=False) # Tell TensorFlow that the model will be built into the default graph with tf.Graph().as_default(): # Define placeholders network.inputs = tf.placeholder(tf.float32, shape=[None, None, network.input_size], name='input') indices_pl = tf.placeholder(tf.int64, name='indices') values_pl = tf.placeholder(tf.int32, name='values') shape_pl = tf.placeholder(tf.int64, name='shape') network.labels = tf.SparseTensor(indices_pl, values_pl, shape_pl) network.inputs_seq_len = tf.placeholder(tf.int64, shape=[None], name='inputs_seq_len') network.keep_prob_input = tf.placeholder(tf.float32, name='keep_prob_input') network.keep_prob_hidden = tf.placeholder(tf.float32, name='keep_prob_hidden') # Add to the graph each operation (including model definition) loss_op, logits = network.compute_loss(network.inputs, network.labels, network.inputs_seq_len, network.keep_prob_input, network.keep_prob_hidden) train_op = network.train(loss_op, optimizer=param['optimizer'], learning_rate_init=float( param['learning_rate']), is_scheduled=False) decode_op = network.decoder(logits, network.inputs_seq_len, decode_type='beam_search', beam_width=20) ler_op = network.compute_ler(decode_op, network.labels) # Build the summary tensor based on the TensorFlow collection of # summaries summary_train = tf.summary.merge(network.summaries_train) summary_dev = tf.summary.merge(network.summaries_dev) # Add the variable initializer operation init_op = tf.global_variables_initializer() # Create a saver for writing training checkpoints saver = tf.train.Saver(max_to_keep=None) # Count total parameters parameters_dict, total_parameters = count_total_parameters( tf.trainable_variables()) for parameter_name in sorted(parameters_dict.keys()): print("%s %d" % (parameter_name, parameters_dict[parameter_name])) print("Total %d variables, %s M parameters" % (len(parameters_dict.keys()), "{:,}".format( total_parameters / 1000000))) csv_steps, csv_train_loss, csv_dev_loss = [], [], [] csv_ler_train, csv_ler_dev = [], [] # Create a session for running operation on the graph with tf.Session() as sess: # Instantiate a SummaryWriter to output summaries and the graph summary_writer = tf.summary.FileWriter(network.model_dir, sess.graph) # Initialize parameters sess.run(init_op) # Make mini-batch generator mini_batch_train = train_data.next_batch() mini_batch_dev = dev_data_step.next_batch() # Train model iter_per_epoch = int(train_data.data_num / param['batch_size']) train_step = train_data.data_num / param['batch_size'] if (train_step) != int(train_step): iter_per_epoch += 1 max_steps = iter_per_epoch * param['num_epoch'] start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() error_best = 1 for step in range(max_steps): # Create feed dictionary for next mini batch (train) with tf.device('/cpu:0'): inputs, labels, inputs_seq_len, _ = mini_batch_train.__next__( ) feed_dict_train = { network.inputs: inputs, network.labels: list2sparsetensor(labels, padded_value=-1), network.inputs_seq_len: inputs_seq_len, network.keep_prob_input: network.dropout_ratio_input, network.keep_prob_hidden: network.dropout_ratio_hidden, network.lr: float(param['learning_rate']) } # Update parameters sess.run(train_op, feed_dict=feed_dict_train) if (step + 1) % 200 == 0: # Create feed dictionary for next mini batch (dev) with tf.device('/cpu:0'): inputs, labels, inputs_seq_len, _ = mini_batch_dev.__next__( ) feed_dict_dev = { network.inputs: inputs, network.labels: list2sparsetensor(labels, padded_value=-1), network.inputs_seq_len: inputs_seq_len, network.keep_prob_input: network.dropout_ratio_input, network.keep_prob_hidden: network.dropout_ratio_hidden } # Compute loss_ loss_train = sess.run(loss_op, feed_dict=feed_dict_train) loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev) csv_steps.append(step) csv_train_loss.append(loss_train) csv_dev_loss.append(loss_dev) # Change to evaluation mode feed_dict_train[network.keep_prob_input] = 1.0 feed_dict_train[network.keep_prob_hidden] = 1.0 feed_dict_dev[network.keep_prob_input] = 1.0 feed_dict_dev[network.keep_prob_hidden] = 1.0 # Compute accuracy & update event file ler_train, summary_str_train = sess.run( [ler_op, summary_train], feed_dict=feed_dict_train) ler_dev, summary_str_dev = sess.run( [ler_op, summary_dev], feed_dict=feed_dict_dev) csv_ler_train.append(ler_train) csv_ler_dev.append(ler_dev) summary_writer.add_summary(summary_str_train, step + 1) summary_writer.add_summary(summary_str_dev, step + 1) summary_writer.flush() duration_step = time.time() - start_time_step print( 'Step %d: loss = %.3f (%.3f) / ler = %.4f (%.4f) (%.3f min)' % (step + 1, loss_train, loss_dev, ler_train, ler_dev, duration_step / 60)) sys.stdout.flush() start_time_step = time.time() # Save checkpoint and evaluate model per epoch if (step + 1) % iter_per_epoch == 0 or (step + 1) == max_steps: duration_epoch = time.time() - start_time_epoch epoch = (step + 1) // iter_per_epoch print('-----EPOCH:%d (%.3f min)-----' % (epoch, duration_epoch / 60)) # Save model (check point) checkpoint_file = join(network.model_dir, 'model.ckpt') save_path = saver.save(sess, checkpoint_file, global_step=epoch) print("Model saved in file: %s" % save_path) if epoch >= 5: start_time_eval = time.time() print('=== Dev Evaluation ===') cer_dev_epoch = do_eval_cer( session=sess, decode_op=decode_op, network=network, dataset=dev_data_epoch, label_type=param['label_type'], eval_batch_size=param['batch_size']) if param['label_type'] in ['kana', 'kanji']: print(' CER: %f %%' % (cer_dev_epoch * 100)) else: print(' PER: %f %%' % (cer_dev_epoch * 100)) if cer_dev_epoch < error_best: error_best = cer_dev_epoch print('■■■ ↑Best Score↑ ■■■') duration_eval = time.time() - start_time_eval print('Evaluation time: %.3f min' % (duration_eval / 60)) start_time_epoch = time.time() start_time_step = time.time() duration_train = time.time() - start_time_train print('Total time: %.3f hour' % (duration_train / 3600)) # Save train & dev loss, ler save_loss(csv_steps, csv_train_loss, csv_dev_loss, save_path=network.model_dir) save_ler(csv_steps, csv_ler_train, csv_ler_dev, save_path=network.model_dir) # Training was finished correctly with open(join(network.model_dir, 'complete.txt'), 'w') as f: f.write('')
def do_eval(network, param, epoch=None): """Evaluate the model. Args: network: model to restore param: A dictionary of parameters epoch: int, the epoch to restore """ # Load dataset eval1_data = Dataset(data_type='eval1', label_type=param['label_type'], batch_size=1, train_data_size=param['train_data_size'], num_stack=param['num_stack'], num_skip=param['num_skip'], is_sorted=False, is_progressbar=True) eval2_data = Dataset(data_type='eval2', label_type=param['label_type'], batch_size=1, train_data_size=param['train_data_size'], num_stack=param['num_stack'], num_skip=param['num_skip'], is_sorted=False, is_progressbar=True) eval3_data = Dataset(data_type='eval3', label_type=param['label_type'], batch_size=1, train_data_size=param['train_data_size'], num_stack=param['num_stack'], num_skip=param['num_skip'], is_sorted=False, is_progressbar=True) # Define placeholders network.inputs = tf.placeholder(tf.float32, shape=[None, None, network.input_size], name='input') indices_pl = tf.placeholder(tf.int64, name='indices') values_pl = tf.placeholder(tf.int32, name='values') shape_pl = tf.placeholder(tf.int64, name='shape') network.labels = tf.SparseTensor(indices_pl, values_pl, shape_pl) network.inputs_seq_len = tf.placeholder(tf.int64, shape=[None], name='inputs_seq_len') network.keep_prob_input = tf.placeholder(tf.float32, name='keep_prob_input') network.keep_prob_hidden = tf.placeholder(tf.float32, name='keep_prob_hidden') # Add to the graph each operation (including model definition) _, logits = network.compute_loss(network.inputs, network.labels, network.inputs_seq_len, network.keep_prob_input, network.keep_prob_hidden) decode_op = network.decoder(logits, network.inputs_seq_len, decode_type='beam_search', beam_width=20) per_op = network.compute_ler(decode_op, network.labels) # Create a saver for writing training checkpoints saver = tf.train.Saver() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(network.model_dir) # If check point exists if ckpt: # Use last saved model model_path = ckpt.model_checkpoint_path if epoch is not None: model_path = model_path.split('/')[:-1] model_path = '/'.join(model_path) + '/model.ckpt-' + str(epoch) saver.restore(sess, model_path) print("Model restored: " + model_path) else: raise ValueError('There are not any checkpoints.') if param['label_type'] in ['kana', 'kanji']: print('=== eval1 Evaluation ===') cer_eval1 = do_eval_cer(session=sess, decode_op=decode_op, network=network, dataset=eval1_data, label_type=param['label_type'], is_test=True, eval_batch_size=1, is_progressbar=True) print(' CER: %f %%' % (cer_eval1 * 100)) print('=== eval2 Evaluation ===') cer_eval2 = do_eval_cer(session=sess, decode_op=decode_op, network=network, dataset=eval2_data, label_type=param['label_type'], is_test=True, eval_batch_size=1, is_progressbar=True) print(' CER: %f %%' % (cer_eval2 * 100)) print('=== eval3 Evaluation ===') cer_eval3 = do_eval_cer(session=sess, decode_op=decode_op, network=network, dataset=eval3_data, label_type=param['label_type'], is_test=True, eval_batch_size=1, is_progressbar=True) print(' CER: %f %%' % (cer_eval3 * 100)) print('=== Mean ===') cer_mean = (cer_eval1 + cer_eval2 + cer_eval3) / 3. print(' CER: %f %%' % (cer_mean * 100)) else: print('=== eval1 Evaluation ===') per_eval1 = do_eval_per(session=sess, per_op=per_op, network=network, dataset=eval1_data, eval_batch_size=1, is_progressbar=True) print(' PER: %f %%' % (per_eval1 * 100)) print('=== eval2 Evaluation ===') per_eval2 = do_eval_per(session=sess, per_op=per_op, network=network, dataset=eval2_data, eval_batch_size=1, is_progressbar=True) print(' PER: %f %%' % (per_eval2 * 100)) print('=== eval3 Evaluation ===') per_eval3 = do_eval_per(session=sess, per_op=per_op, network=network, dataset=eval3_data, eval_batch_size=1, is_progressbar=True) print(' PER: %f %%' % (per_eval3 * 100)) print('=== Mean ===') per_mean = (per_eval1 + per_eval2 + per_eval3) / 3. print(' PER: %f %%' % 1 (per_mean * 100))
def do_eval(model, params, epoch, eval_batch_size, beam_width): """Evaluate the model. Args: model: the model to restore params (dict): A dictionary of parameters epoch (int): the epoch to restore eval_batch_size (int): the size of mini-batch when evaluation beam_width (int): beam_width (int, optional): beam width for beam search. 1 disables beam search, which mean greedy decoding. """ # Load dataset eval1_data = Dataset( data_type='eval1', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'] if eval_batch_size == - 1 else eval_batch_size, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], shuffle=False) eval2_data = Dataset( data_type='eval2', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'] if eval_batch_size == - 1 else eval_batch_size, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], shuffle=False) eval3_data = Dataset( data_type='eval3', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'] if eval_batch_size == - 1 else eval_batch_size, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], shuffle=False) with tf.name_scope('tower_gpu0'): # Define placeholders model.create_placeholders() # Add to the graph each operation (including model definition) _, logits = model.compute_loss(model.inputs_pl_list[0], model.labels_pl_list[0], model.inputs_seq_len_pl_list[0], model.keep_prob_pl_list[0]) decode_op = model.decoder(logits, model.inputs_seq_len_pl_list[0], beam_width=beam_width) # Create a saver for writing training checkpoints saver = tf.train.Saver() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(model.save_path) # If check point exists if ckpt: model_path = ckpt.model_checkpoint_path if epoch != -1: model_path = model_path.split('/')[:-1] model_path = '/'.join(model_path) + '/model.ckpt-' + str(epoch) saver.restore(sess, model_path) print("Model restored: " + model_path) else: raise ValueError('There are not any checkpoints.') print('Test Data Evaluation:') cer_eval1 = do_eval_cer( session=sess, decode_ops=[decode_op], model=model, dataset=eval1_data, label_type=params['label_type'], train_data_size=params['train_data_size'], is_test=True, # eval_batch_size=eval_batch_size, progressbar=True) print(' CER (eval1): %f %%' % (cer_eval1 * 100)) cer_eval2 = do_eval_cer( session=sess, decode_ops=[decode_op], model=model, dataset=eval2_data, label_type=params['label_type'], train_data_size=params['train_data_size'], is_test=True, # eval_batch_size=eval_batch_size, progressbar=True) print(' CER (eval2): %f %%' % (cer_eval2 * 100)) cer_eval3 = do_eval_cer( session=sess, decode_ops=[decode_op], model=model, dataset=eval3_data, label_type=params['label_type'], train_data_size=params['train_data_size'], is_test=True, # eval_batch_size=eval_batch_size, progressbar=True) print(' CER (eval3): %f %%' % (cer_eval3 * 100)) cer_mean = (cer_eval1 + cer_eval2 + cer_eval3) / 3. print(' CER (mean): %f %%' % (cer_mean * 100))
def do_eval(model, params, epoch, eval_batch_size, beam_width): """Evaluate the model. Args: model: the model to restore params (dict): A dictionary of parameters epoch (int): the epoch to restore eval_batch_size (int): the size of mini-batch when evaluation beam_width (int): beam_width (int, optional): beam width for beam search. 1 disables beam search, which mean greedy decoding. """ # Load dataset eval1_data = Dataset(data_type='eval1', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'] if eval_batch_size == -1 else eval_batch_size, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], shuffle=False) eval2_data = Dataset(data_type='eval2', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'] if eval_batch_size == -1 else eval_batch_size, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], shuffle=False) eval3_data = Dataset(data_type='eval3', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'] if eval_batch_size == -1 else eval_batch_size, splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], shuffle=False) with tf.name_scope('tower_gpu0'): # Define placeholders model.create_placeholders() # Add to the graph each operation (including model definition) _, logits = model.compute_loss(model.inputs_pl_list[0], model.labels_pl_list[0], model.inputs_seq_len_pl_list[0], model.keep_prob_pl_list[0]) decode_op = model.decoder(logits, model.inputs_seq_len_pl_list[0], beam_width=beam_width) # Create a saver for writing training checkpoints saver = tf.train.Saver() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(model.save_path) # If check point exists if ckpt: model_path = ckpt.model_checkpoint_path if epoch != -1: model_path = model_path.split('/')[:-1] model_path = '/'.join(model_path) + '/model.ckpt-' + str(epoch) saver.restore(sess, model_path) print("Model restored: " + model_path) else: raise ValueError('There are not any checkpoints.') print('Test Data Evaluation:') cer_eval1 = do_eval_cer( session=sess, decode_ops=[decode_op], model=model, dataset=eval1_data, label_type=params['label_type'], train_data_size=params['train_data_size'], is_test=True, # eval_batch_size=eval_batch_size, progressbar=True) print(' CER (eval1): %f %%' % (cer_eval1 * 100)) cer_eval2 = do_eval_cer( session=sess, decode_ops=[decode_op], model=model, dataset=eval2_data, label_type=params['label_type'], train_data_size=params['train_data_size'], is_test=True, # eval_batch_size=eval_batch_size, progressbar=True) print(' CER (eval2): %f %%' % (cer_eval2 * 100)) cer_eval3 = do_eval_cer( session=sess, decode_ops=[decode_op], model=model, dataset=eval3_data, label_type=params['label_type'], train_data_size=params['train_data_size'], is_test=True, # eval_batch_size=eval_batch_size, progressbar=True) print(' CER (eval3): %f %%' % (cer_eval3 * 100)) cer_mean = (cer_eval1 + cer_eval2 + cer_eval3) / 3. print(' CER (mean): %f %%' % (cer_mean * 100))
def do_train(model, params, gpu_indices): """Run training. Args: model: the model to train params (dict): A dictionary of parameters gpu_indices (list): GPU indices """ # Load dataset train_data = Dataset( data_type='train', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'], max_epoch=params['num_epoch'], splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=True, sort_stop_epoch=params['sort_stop_epoch'], num_gpu=len(gpu_indices)) dev_data = Dataset( data_type='dev', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'], splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=False, num_gpu=len(gpu_indices)) # Tell TensorFlow that the model will be built into the default graph with tf.Graph().as_default(), tf.device('/cpu:0'): # Create a variable to track the global step global_step = tf.Variable(0, name='global_step', trainable=False) # Set optimizer learning_rate_pl = tf.placeholder(tf.float32, name='learning_rate') optimizer = model._set_optimizer( params['optimizer'], learning_rate_pl) # Calculate the gradients for each model tower total_grads_and_vars, total_losses = [], [] decode_ops, ler_ops = [], [] all_devices = ['/gpu:%d' % i_gpu for i_gpu in range(len(gpu_indices))] # NOTE: /cpu:0 is prepared for evaluation with tf.variable_scope(tf.get_variable_scope()): for i_gpu in range(len(all_devices)): with tf.device(all_devices[i_gpu]): with tf.name_scope('tower_gpu%d' % i_gpu) as scope: # Define placeholders in each tower model.create_placeholders() # Calculate the total loss for the current tower of the # model. This function constructs the entire model but # shares the variables across all towers. tower_loss, tower_logits = model.compute_loss( model.inputs_pl_list[i_gpu], model.labels_pl_list[i_gpu], model.inputs_seq_len_pl_list[i_gpu], model.keep_prob_pl_list[i_gpu], scope) tower_loss = tf.expand_dims(tower_loss, axis=0) total_losses.append(tower_loss) # Reuse variables for the next tower tf.get_variable_scope().reuse_variables() # Calculate the gradients for the batch of data on this # tower tower_grads_and_vars = optimizer.compute_gradients( tower_loss) # Gradient clipping tower_grads_and_vars = model._clip_gradients( tower_grads_and_vars) # TODO: Optionally add gradient noise # Keep track of the gradients across all towers total_grads_and_vars.append(tower_grads_and_vars) # Add to the graph each operation per tower decode_op_tower = model.decoder( tower_logits, model.inputs_seq_len_pl_list[i_gpu], beam_width=params['beam_width']) decode_ops.append(decode_op_tower) ler_op_tower = model.compute_ler( decode_op_tower, model.labels_pl_list[i_gpu]) ler_op_tower = tf.expand_dims(ler_op_tower, axis=0) ler_ops.append(ler_op_tower) # Aggregate losses, then calculate average loss total_losses = tf.concat(axis=0, values=total_losses) loss_op = tf.reduce_mean(total_losses, axis=0) ler_ops = tf.concat(axis=0, values=ler_ops) ler_op = tf.reduce_mean(ler_ops, axis=0) # We must calculate the mean of each gradient. Note that this is the # synchronization point across all towers average_grads_and_vars = average_gradients(total_grads_and_vars) # Apply the gradients to adjust the shared variables. train_op = optimizer.apply_gradients(average_grads_and_vars, global_step=global_step) # Define learning rate controller lr_controller = Controller( learning_rate_init=params['learning_rate'], decay_start_epoch=params['decay_start_epoch'], decay_rate=params['decay_rate'], decay_patient_epoch=params['decay_patient_epoch'], lower_better=True) # Build the summary tensor based on the TensorFlow collection of # summaries summary_train = tf.summary.merge(model.summaries_train) summary_dev = tf.summary.merge(model.summaries_dev) # Add the variable initializer operation init_op = tf.global_variables_initializer() # Create a saver for writing training checkpoints saver = tf.train.Saver(max_to_keep=None) # Count total parameters parameters_dict, total_parameters = count_total_parameters( tf.trainable_variables()) for parameter_name in sorted(parameters_dict.keys()): print("%s %d" % (parameter_name, parameters_dict[parameter_name])) print("Total %d variables, %s M parameters" % (len(parameters_dict.keys()), "{:,}".format(total_parameters / 1000000))) csv_steps, csv_loss_train, csv_loss_dev = [], [], [] csv_ler_train, csv_ler_dev = [], [] # Create a session for running operation on the graph # NOTE: Start running operations on the Graph. allow_soft_placement # must be set to True to build towers on GPU, as some of the ops do not # have GPU implementations. with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess: # Instantiate a SummaryWriter to output summaries and the graph summary_writer = tf.summary.FileWriter( model.save_path, sess.graph) # Initialize parameters sess.run(init_op) # Train model start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() cer_dev_best = 1 not_improved_epoch = 0 learning_rate = float(params['learning_rate']) for step, (data, is_new_epoch) in enumerate(train_data): # Create feed dictionary for next mini batch (train) inputs, labels, inputs_seq_len, _ = data feed_dict_train = {} for i_gpu in range(len(gpu_indices)): feed_dict_train[model.inputs_pl_list[i_gpu] ] = inputs[i_gpu] feed_dict_train[model.labels_pl_list[i_gpu]] = list2sparsetensor( labels[i_gpu], padded_value=train_data.padded_value) feed_dict_train[model.inputs_seq_len_pl_list[i_gpu] ] = inputs_seq_len[i_gpu] feed_dict_train[model.keep_prob_pl_list[i_gpu] ] = 1 - float(params['dropout']) feed_dict_train[learning_rate_pl] = learning_rate # Update parameters sess.run(train_op, feed_dict=feed_dict_train) if (step + 1) % int(params['print_step'] / len(gpu_indices)) == 0: # Create feed dictionary for next mini batch (dev) inputs, labels, inputs_seq_len, _ = dev_data.next()[0] feed_dict_dev = {} for i_gpu in range(len(gpu_indices)): feed_dict_dev[model.inputs_pl_list[i_gpu] ] = inputs[i_gpu] feed_dict_dev[model.labels_pl_list[i_gpu]] = list2sparsetensor( labels[i_gpu], padded_value=dev_data.padded_value) feed_dict_dev[model.inputs_seq_len_pl_list[i_gpu] ] = inputs_seq_len[i_gpu] feed_dict_dev[model.keep_prob_pl_list[i_gpu]] = 1.0 # Compute loss loss_train = sess.run(loss_op, feed_dict=feed_dict_train) loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev) csv_steps.append(step) csv_loss_train.append(loss_train) csv_loss_dev.append(loss_dev) # Change to evaluation mode for i_gpu in range(len(gpu_indices)): feed_dict_train[model.keep_prob_pl_list[i_gpu]] = 1.0 # Compute accuracy & update event files ler_train, summary_str_train = sess.run( [ler_op, summary_train], feed_dict=feed_dict_train) ler_dev, summary_str_dev = sess.run( [ler_op, summary_dev], feed_dict=feed_dict_dev) csv_ler_train.append(ler_train) csv_ler_dev.append(ler_dev) summary_writer.add_summary(summary_str_train, step + 1) summary_writer.add_summary(summary_str_dev, step + 1) summary_writer.flush() duration_step = time.time() - start_time_step print("Step %d (epoch: %.3f): loss = %.3f (%.3f) / ler = %.3f (%.3f) / lr = %.5f (%.3f min)" % (step + 1, train_data.epoch_detail, loss_train, loss_dev, ler_train, ler_dev, learning_rate, duration_step / 60)) sys.stdout.flush() start_time_step = time.time() # Save checkpoint and evaluate model per epoch if is_new_epoch: duration_epoch = time.time() - start_time_epoch print('-----EPOCH:%d (%.3f min)-----' % (train_data.epoch, duration_epoch / 60)) # Save fugure of loss & ler plot_loss(csv_loss_train, csv_loss_dev, csv_steps, save_path=model.save_path) plot_ler(csv_ler_train, csv_ler_dev, csv_steps, label_type=params['label_type'], save_path=model.save_path) if train_data.epoch >= params['eval_start_epoch']: start_time_eval = time.time() print('=== Dev Data Evaluation ===') cer_dev_epoch = do_eval_cer( session=sess, decode_ops=decode_ops, model=model, dataset=dev_data, label_type=params['label_type'], train_data_size=params['train_data_size'], eval_batch_size=1) print(' CER: %f %%' % (cer_dev_epoch * 100)) if cer_dev_epoch < cer_dev_best: cer_dev_best = cer_dev_epoch not_improved_epoch = 0 print('■■■ ↑Best Score (CER)↑ ■■■') # Save model only (check point) checkpoint_file = join( model.save_path, 'model.ckpt') save_path = saver.save( sess, checkpoint_file, global_step=train_data.epoch) print("Model saved in file: %s" % save_path) else: not_improved_epoch += 1 duration_eval = time.time() - start_time_eval print('Evaluation time: %.3f min' % (duration_eval / 60)) # Early stopping if not_improved_epoch == params['not_improved_patient_epoch']: break # Update learning rate learning_rate = lr_controller.decay_lr( learning_rate=learning_rate, epoch=train_data.epoch, value=cer_dev_epoch) start_time_epoch = time.time() duration_train = time.time() - start_time_train print('Total time: %.3f hour' % (duration_train / 3600)) # Training was finished correctly with open(join(model.model_dir, 'complete.txt'), 'w') as f: f.write('')
def do_train(model, params, gpu_indices): """Run training. Args: model: the model to train params (dict): A dictionary of parameters gpu_indices (list): GPU indices """ # Load dataset train_data = Dataset(data_type='train', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'], max_epoch=params['num_epoch'], splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=True, sort_stop_epoch=params['sort_stop_epoch'], num_gpu=len(gpu_indices)) dev_data = Dataset(data_type='dev', train_data_size=params['train_data_size'], label_type=params['label_type'], batch_size=params['batch_size'], splice=params['splice'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=False, num_gpu=len(gpu_indices)) # eval1_data = Dataset( # data_type='eval1', train_data_size=params['train_data_size'], # label_type=params['label_type'], # batch_size=params['batch_size'], splice=params['splice'], # num_stack=params['num_stack'], num_skip=params['num_skip'], # sort_utt=False) # eval2_data = Dataset( # data_type='eval2', train_data_size=params['train_data_size'], # label_type=params['label_type'], # batch_size=params['batch_size'], splice=params['splice'], # num_stack=params['num_stack'], num_skip=params['num_skip'], # sort_utt=False) # eval3_data = Dataset( # data_type='eval3', train_data_size=params['train_data_size'], # label_type=params['label_type'], # batch_size=params['batch_size'], splice=params['splice'], # num_stack=params['num_stack'], num_skip=params['num_skip'], # sort_utt=False) # Tell TensorFlow that the model will be built into the default graph with tf.Graph().as_default(), tf.device('/cpu:0'): # Create a variable to track the global step global_step = tf.Variable(0, name='global_step', trainable=False) # Set optimizer learning_rate_pl = tf.placeholder(tf.float32, name='learning_rate') optimizer = model._set_optimizer(params['optimizer'], learning_rate_pl) # Calculate the gradients for each model tower total_grads_and_vars, total_losses = [], [] decode_ops, ler_ops = [], [] all_devices = ['/gpu:%d' % i_gpu for i_gpu in range(len(gpu_indices))] # NOTE: /cpu:0 is prepared for evaluation with tf.variable_scope(tf.get_variable_scope()): for i_gpu in range(len(all_devices)): with tf.device(all_devices[i_gpu]): with tf.name_scope('tower_gpu%d' % i_gpu) as scope: # Define placeholders in each tower model.create_placeholders() # Calculate the total loss for the current tower of the # model. This function constructs the entire model but # shares the variables across all towers. tower_loss, tower_logits = model.compute_loss( model.inputs_pl_list[i_gpu], model.labels_pl_list[i_gpu], model.inputs_seq_len_pl_list[i_gpu], model.keep_prob_pl_list[i_gpu], scope) tower_loss = tf.expand_dims(tower_loss, axis=0) total_losses.append(tower_loss) # Reuse variables for the next tower tf.get_variable_scope().reuse_variables() # Calculate the gradients for the batch of data on this # tower tower_grads_and_vars = optimizer.compute_gradients( tower_loss) # Gradient clipping tower_grads_and_vars = model._clip_gradients( tower_grads_and_vars) # TODO: Optionally add gradient noise # Keep track of the gradients across all towers total_grads_and_vars.append(tower_grads_and_vars) # Add to the graph each operation per tower decode_op_tower = model.decoder( tower_logits, model.inputs_seq_len_pl_list[i_gpu], beam_width=params['beam_width']) decode_ops.append(decode_op_tower) ler_op_tower = model.compute_ler( decode_op_tower, model.labels_pl_list[i_gpu]) ler_op_tower = tf.expand_dims(ler_op_tower, axis=0) ler_ops.append(ler_op_tower) # Aggregate losses, then calculate average loss total_losses = tf.concat(axis=0, values=total_losses) loss_op = tf.reduce_mean(total_losses, axis=0) ler_ops = tf.concat(axis=0, values=ler_ops) ler_op = tf.reduce_mean(ler_ops, axis=0) # We must calculate the mean of each gradient. Note that this is the # synchronization point across all towers average_grads_and_vars = average_gradients(total_grads_and_vars) # Apply the gradients to adjust the shared variables. train_op = optimizer.apply_gradients(average_grads_and_vars, global_step=global_step) # Define learning rate controller lr_controller = Controller( learning_rate_init=params['learning_rate'], decay_start_epoch=params['decay_start_epoch'], decay_rate=params['decay_rate'], decay_patient_epoch=params['decay_patient_epoch'], lower_better=True) # Build the summary tensor based on the TensorFlow collection of # summaries summary_train = tf.summary.merge(model.summaries_train) summary_dev = tf.summary.merge(model.summaries_dev) # Add the variable initializer operation init_op = tf.global_variables_initializer() # Create a saver for writing training checkpoints saver = tf.train.Saver(max_to_keep=None) # Count total parameters parameters_dict, total_parameters = count_total_parameters( tf.trainable_variables()) for parameter_name in sorted(parameters_dict.keys()): print("%s %d" % (parameter_name, parameters_dict[parameter_name])) print("Total %d variables, %s M parameters" % (len(parameters_dict.keys()), "{:,}".format( total_parameters / 1000000))) csv_steps, csv_loss_train, csv_loss_dev = [], [], [] csv_ler_train, csv_ler_dev = [], [] # Create a session for running operation on the graph # NOTE: Start running operations on the Graph. allow_soft_placement # must be set to True to build towers on GPU, as some of the ops do not # have GPU implementations. with tf.Session( config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess: # Instantiate a SummaryWriter to output summaries and the graph summary_writer = tf.summary.FileWriter(model.save_path, sess.graph) # Initialize parameters sess.run(init_op) # Train model start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() ler_dev_best = 1 not_improved_epoch = 0 learning_rate = float(params['learning_rate']) for step, (data, is_new_epoch) in enumerate(train_data): # Create feed dictionary for next mini batch (train) inputs, labels, inputs_seq_len, _ = data feed_dict_train = {} for i_gpu in range(len(gpu_indices)): feed_dict_train[ model.inputs_pl_list[i_gpu]] = inputs[i_gpu] feed_dict_train[ model.labels_pl_list[i_gpu]] = list2sparsetensor( labels[i_gpu], padded_value=train_data.padded_value) feed_dict_train[model.inputs_seq_len_pl_list[ i_gpu]] = inputs_seq_len[i_gpu] feed_dict_train[ model.keep_prob_pl_list[i_gpu]] = 1 - float( params['dropout']) feed_dict_train[learning_rate_pl] = learning_rate # Update parameters sess.run(train_op, feed_dict=feed_dict_train) if (step + 1) % int( params['print_step'] / len(gpu_indices)) == 0: # Create feed dictionary for next mini batch (dev) (inputs, labels, inputs_seq_len, _), _ = dev_data.next() feed_dict_dev = {} for i_gpu in range(len(gpu_indices)): feed_dict_dev[ model.inputs_pl_list[i_gpu]] = inputs[i_gpu] feed_dict_dev[ model.labels_pl_list[i_gpu]] = list2sparsetensor( labels[i_gpu], padded_value=dev_data.padded_value) feed_dict_dev[model.inputs_seq_len_pl_list[ i_gpu]] = inputs_seq_len[i_gpu] feed_dict_dev[model.keep_prob_pl_list[i_gpu]] = 1.0 # Compute loss loss_train = sess.run(loss_op, feed_dict=feed_dict_train) loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev) csv_steps.append(step) csv_loss_train.append(loss_train) csv_loss_dev.append(loss_dev) # Change to evaluation mode for i_gpu in range(len(gpu_indices)): feed_dict_train[model.keep_prob_pl_list[i_gpu]] = 1.0 # Compute accuracy & update event files ler_train, summary_str_train = sess.run( [ler_op, summary_train], feed_dict=feed_dict_train) ler_dev, summary_str_dev = sess.run( [ler_op, summary_dev], feed_dict=feed_dict_dev) csv_ler_train.append(ler_train) csv_ler_dev.append(ler_dev) summary_writer.add_summary(summary_str_train, step + 1) summary_writer.add_summary(summary_str_dev, step + 1) summary_writer.flush() duration_step = time.time() - start_time_step print( "Step %d (epoch: %.3f): loss = %.3f (%.3f) / ler = %.3f (%.3f) / lr = %.5f (%.3f min)" % (step + 1, train_data.epoch_detail, loss_train, loss_dev, ler_train, ler_dev, learning_rate, duration_step / 60)) sys.stdout.flush() start_time_step = time.time() # Save checkpoint and evaluate model per epoch if is_new_epoch: duration_epoch = time.time() - start_time_epoch print('-----EPOCH:%d (%.3f min)-----' % (train_data.epoch, duration_epoch / 60)) # Save fugure of loss & ler plot_loss(csv_loss_train, csv_loss_dev, csv_steps, save_path=model.save_path) plot_ler(csv_ler_train, csv_ler_dev, csv_steps, label_type=params['label_type'], save_path=model.save_path) if train_data.epoch >= params['eval_start_epoch']: start_time_eval = time.time() print('=== Dev Data Evaluation ===') # dev-clean ler_dev_epoch = do_eval_cer( session=sess, decode_ops=decode_ops, model=model, dataset=dev_data, label_type=params['label_type'], train_data_size=params['train_data_size'], eval_batch_size=params['batch_size']) print(' CER: %f %%' % (ler_dev_epoch * 100)) if ler_dev_epoch < ler_dev_best: ler_dev_best = ler_dev_epoch not_improved_epoch = 0 print('■■■ ↑Best Score (CER)↑ ■■■') # Save model (check point) checkpoint_file = join(model.save_path, 'model.ckpt') save_path = saver.save( sess, checkpoint_file, global_step=train_data.epoch) print("Model saved in file: %s" % save_path) else: not_improved_epoch += 1 duration_eval = time.time() - start_time_eval print('Evaluation time: %.3f min' % (duration_eval / 60)) # Early stopping if not_improved_epoch == params[ 'not_improved_patient_epoch']: break # Update learning rate learning_rate = lr_controller.decay_lr( learning_rate=learning_rate, epoch=train_data.epoch, value=ler_dev_epoch) start_time_epoch = time.time() duration_train = time.time() - start_time_train print('Total time: %.3f hour' % (duration_train / 3600)) # Training was finished correctly with open(join(model.model_dir, 'complete.txt'), 'w') as f: f.write('')
def do_train(model, params): """Run training. Args: model: model to train params: A dictionary of parameters """ # Load dataset train_data = Dataset(data_type='train', label_type_main=params['label_type_main'], label_type_sub=params['label_type_sub'], train_data_size=params['train_data_size'], batch_size=params['batch_size'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=True) dev_data_step = Dataset(data_type='dev', label_type_main=params['label_type_main'], label_type_sub=params['label_type_sub'], train_data_size=params['train_data_size'], batch_size=params['batch_size'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=False) dev_data_epoch = Dataset(data_type='dev', label_type_main=params['label_type_main'], label_type_sub=params['label_type_sub'], train_data_size=params['train_data_size'], batch_size=params['batch_size'], num_stack=params['num_stack'], num_skip=params['num_skip'], sort_utt=False) # Tell TensorFlow that the model will be built into the default graph with tf.Graph().as_default(): # Define placeholders model.create_placeholders(gpu_index=0) # Add to the graph each operation loss_op, logits_main, logits_sub = model.compute_loss( model.inputs_pl_list[0], model.labels_pl_list[0], model.labels_sub_pl_list[0], model.inputs_seq_len_pl_list[0], model.keep_prob_input_pl_list[0], model.keep_prob_hidden_pl_list[0], model.keep_prob_output_pl_list[0]) train_op = model.train(loss_op, optimizer=params['optimizer'], learning_rate=model.learning_rate_pl_list[0]) decode_op_main, decode_op_sub = model.decoder( logits_main, logits_sub, model.inputs_seq_len_pl_list[0], decode_type='beam_search', beam_width=20) ler_op_main, ler_op_sub = model.compute_ler( decode_op_main, decode_op_sub, model.labels_pl_list[0], model.labels_sub_pl_list[0]) # Define learning rate controller lr_controller = Controller( learning_rate_init=params['learning_rate'], decay_start_epoch=params['decay_start_epoch'], decay_rate=params['decay_rate'], decay_patient_epoch=1, lower_better=True) # Build the summary tensor based on the TensorFlow collection of # summaries summary_train = tf.summary.merge(model.summaries_train) summary_dev = tf.summary.merge(model.summaries_dev) # Add the variable initializer operation init_op = tf.global_variables_initializer() # Create a saver for writing training checkpoints saver = tf.train.Saver(max_to_keep=None) # Count total parameters parameters_dict, total_parameters = count_total_parameters( tf.trainable_variables()) for parameter_name in sorted(parameters_dict.keys()): print("%s %d" % (parameter_name, parameters_dict[parameter_name])) print("Total %d variables, %s M parameters" % (len(parameters_dict.keys()), "{:,}".format(total_parameters / 1000000))) csv_steps, csv_loss_train, csv_loss_dev = [], [], [] csv_ler_main_train, csv_ler_main_dev = [], [] csv_ler_sub_train, csv_ler_sub_dev = [], [] # Create a session for running operation on the graph with tf.Session() as sess: # Instantiate a SummaryWriter to output summaries and the graph summary_writer = tf.summary.FileWriter( model.save_path, sess.graph) # Initialize parameters sess.run(init_op) # Make mini-batch generator mini_batch_train = train_data.next_batch() mini_batch_dev = dev_data_step.next_batch() # Train model iter_per_epoch = int(train_data.data_num / params['batch_size']) train_step = train_data.data_num / params['batch_size'] if (train_step) != int(train_step): iter_per_epoch += 1 max_steps = iter_per_epoch * params['num_epoch'] start_time_train = time.time() start_time_epoch = time.time() start_time_step = time.time() ler_main_dev_best = 1 learning_rate = float(params['learning_rate']) for step in range(max_steps): # Create feed dictionary for next mini batch (train) inputs, labels_main, labels_sub, inputs_seq_len, _ = mini_batch_train.__next__() feed_dict_train = { model.inputs_pl_list[0]: inputs, model.labels_pl_list[0]: list2sparsetensor(labels_main, padded_value=-1), model.labels_sub_pl_list[0]: list2sparsetensor(labels_sub, padded_value=-1), model.inputs_seq_len_pl_list[0]: inputs_seq_len, model.keep_prob_input_pl_list[0]: model.dropout_ratio_input, model.keep_prob_hidden_pl_list[0]: model.dropout_ratio_hidden, model.keep_prob_output_pl_list[0]: model.dropout_ratio_output, model.learning_rate_pl_list[0]: learning_rate } # Update parameters sess.run(train_op, feed_dict=feed_dict_train) if (step + 1) % 200 == 0: # Create feed dictionary for next mini batch (dev) inputs, labels_main, labels_sub, inputs_seq_len, _ = mini_batch_dev.__next__() feed_dict_dev = { model.inputs_pl_list[0]: inputs, model.labels_pl_list[0]: list2sparsetensor(labels_main, padded_value=-1), model.labels_sub_pl_list[0]: list2sparsetensor(labels_sub, padded_value=-1), model.inputs_seq_len_pl_list[0]: inputs_seq_len, model.keep_prob_input_pl_list[0]: 1.0, model.keep_prob_hidden_pl_list[0]: 1.0, model.keep_prob_output_pl_list[0]: 1.0 } # Compute loss loss_train = sess.run(loss_op, feed_dict=feed_dict_train) loss_dev = sess.run(loss_op, feed_dict=feed_dict_dev) csv_steps.append(step) csv_loss_train.append(loss_train) csv_loss_dev.append(loss_dev) # Change to evaluation mode feed_dict_train[model.keep_prob_input_pl_list[0]] = 1.0 feed_dict_train[model.keep_prob_hidden_pl_list[0]] = 1.0 feed_dict_train[model.keep_prob_output_pl_list[0]] = 1.0 # Compute accuracy & update event file ler_main_train, ler_sub_train, summary_str_train = sess.run( [ler_op_main, ler_op_sub, summary_train], feed_dict=feed_dict_train) ler_main_dev, ler_sub_dev, summary_str_dev = sess.run( [ler_op_main, ler_op_sub, summary_dev], feed_dict=feed_dict_dev) csv_ler_main_train.append(ler_main_train) csv_ler_main_dev.append(ler_main_dev) csv_ler_sub_train.append(ler_sub_train) csv_ler_sub_dev.append(ler_sub_dev) summary_writer.add_summary(summary_str_train, step + 1) summary_writer.add_summary(summary_str_dev, step + 1) summary_writer.flush() duration_step = time.time() - start_time_step print('Step %d: loss = %.3f (%.3f) / ler_main = %.4f (%.4f) / ler_sub = %.4f (%.4f) (%.3f min)' % (step + 1, loss_train, loss_dev, ler_main_train, ler_main_dev, ler_sub_train, ler_sub_dev, duration_step / 60)) sys.stdout.flush() start_time_step = time.time() # Save checkpoint and evaluate model per epoch if (step + 1) % iter_per_epoch == 0 or (step + 1) == max_steps: duration_epoch = time.time() - start_time_epoch epoch = (step + 1) // iter_per_epoch print('-----EPOCH:%d (%.3f min)-----' % (epoch, duration_epoch / 60)) # Save model (check point) checkpoint_file = join(model.save_path, 'model.ckpt') save_path = saver.save( sess, checkpoint_file, global_step=epoch) print("Model saved in file: %s" % save_path) if epoch >= 5: start_time_eval = time.time() print('=== Dev Evaluation ===') ler_main_dev_epoch = do_eval_cer( session=sess, decode_op=decode_op_main, model=model, dataset=dev_data_epoch, label_type=params['label_type_main'], eval_batch_size=params['batch_size'], is_multitask=True, is_main=True) print(' CER (main): %f %%' % (ler_main_dev_epoch * 100)) ler_sub_dev_epoch = do_eval_cer( session=sess, decode_op=decode_op_sub, model=model, dataset=dev_data_epoch, label_type=params['label_type_sub'], eval_batch_size=params['batch_size'], is_multitask=True, is_main=False) print(' CER (sub): %f %%' % (ler_sub_dev_epoch * 100)) if ler_main_dev_epoch < ler_main_dev_best: ler_main_dev_best = ler_main_dev_epoch print('■■■ ↑Best Score (CER main)↑ ■■■') duration_eval = time.time() - start_time_eval print('Evaluation time: %.3f min' % (duration_eval / 60)) # Update learning rate learning_rate = lr_controller.decay_lr( learning_rate=learning_rate, epoch=epoch, value=ler_main_dev_epoch) start_time_epoch = time.time() start_time_step = time.time() duration_train = time.time() - start_time_train print('Total time: %.3f hour' % (duration_train / 3600)) # Save train & dev loss, ler save_loss(csv_steps, csv_loss_train, csv_loss_dev, save_path=model.save_path) save_ler(csv_steps, csv_ler_main_train, csv_ler_sub_dev, save_path=model.save_path) save_ler(csv_steps, csv_ler_sub_train, csv_ler_sub_dev, save_path=model.save_path) # Training was finished correctly with open(join(model.save_path, 'complete.txt'), 'w') as f: f.write('')