Example #1
0
def test_train():
    with tempfile.TemporaryDirectory() as tmp_dir:
        train_config = train.TrainConfig(
            train_image_dir_path=(Path(__file__).parent /
                                  'dammy_image_data').resolve(),
            max_iter=2,
            batch_size=5,
            snapshot_iter_interval=2,
            display_iter_interval=1,
            n_discriminator_update=3,
            evaluation_iter_interval=1)
        model_config = ModelConfig(width=64,
                                   height=64,
                                   n_units_xyrz=10,
                                   n_hidden_units=[10, 10],
                                   z_size=2)
        train.train(Path(tmp_dir), train_config, model_config)
Example #2
0
File: main.py Project: mxxhcm/code
    if not argslist.use_lstm:
        argslist.history_length = 1
    os.environ['CUDA_VISIBLE_DEVICES'] = '1'
    params = ["reward_type", "history_length", "shared_lstm", "batch_size", "num_task", "train_data_name",
              "buffer_size", "max_episode_len", "save_rate", "gamma", "num_units"]
    save_path = "policy"
    dict_arg = vars(argslist)
    for param in params:
        save_path = save_path + "_" + param + "_" + str(dict_arg[param])
    save_path += "_UAVnumber_" + str(FLAGS.num_uav) + "_size_map_" + str(FLAGS.size_map) + "_radius_" + str(FLAGS.radius)
    argslist.save_dir = argslist.save_dir + save_path + "_debug/"
    print(argslist.save_dir)
    
    # train
    if argslist.train:
        train(argslist)

    if argslist.transfer_train:
        transfer_train(argslist, 300)

    # train test
    if argslist.train_test:
        argslist.draw_picture_test = True
        if argslist.mp:
            train_multi_process_test(argslist)
        else:
            train_test(argslist, int(396/argslist.save_rate))

    # transfer test
    if argslist.transfer_test:
        argslist.draw_picture_test = True