def default_output_file_loaders(cls) -> dict[FileType, FileLoader]:
     return {
         FileType.json:
         JSONFileLoader([
             FileLoaderField("predicted_answers", "predicted_answers", dict)
         ])
     }
Example #2
0
 def default_output_file_loaders(cls) -> dict[FileType, FileLoader]:
     field_name = "hypothesis"
     return {
         FileType.text:
         TextFileLoader(field_name, str),
         FileType.json:
         JSONFileLoader([FileLoaderField(field_name, field_name, str)]),
     }
Example #3
0
 def default_output_file_loaders(cls) -> dict[FileType, FileLoader]:
     return {
         FileType.conll:
         CoNLLFileLoader([FileLoaderField(1, "pred_tags", str)]),
         FileType.json:
         JSONFileLoader([
             FileLoaderField("tokens", "tokens", list),
             FileLoaderField("predicted_tags", "pred_tags", list),
         ]),
     }
Example #4
0
 def default_output_file_loaders(cls) -> dict[FileType, FileLoader]:
     target_field_names = ["predict", "predictions", "true_rank"]
     return {
         FileType.json:
         JSONFileLoader([
             FileLoaderField("predict", target_field_names[0], str),
             FileLoaderField("predictions", target_field_names[1], list),
             FileLoaderField("true_rank", target_field_names[2], int),
         ])
     }
 def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]:
     return {
         FileType.json:
         JSONFileLoader([
             FileLoaderField('text', 'text', str),
             FileLoaderField('edits', 'edits', dict),
         ]),
         FileType.datalab:
         DatalabFileLoader([
             FileLoaderField('text', 'text', str),
             FileLoaderField('edits', 'edits', dict),
         ]),
     }
Example #6
0
 def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]:
     field_name = 'text'
     return {
         FileType.text:
         TextFileLoader(),
         FileType.json:
         JSONFileLoader([
             FileLoaderField("text", field_name, str),
         ]),
         FileType.datalab:
         DatalabFileLoader([
             FileLoaderField("text", field_name, str),
         ]),
     }
Example #7
0
    def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]:

        file_path = cache_api.cache_online_file(
            'http://phontron.com/download/explainaboard/pre_computed/kg/entity2wikidata.json',  # noqa
            'pre_computed/kg/entity2wikidata.json',
        )
        with open(file_path, 'r') as file:
            entity_dic = json.loads(file.read())

        map_preprocessor = KGMapPreprocessor(
            resources={"dictionary": entity_dic})

        target_field_names = [
            "true_head",
            "true_head_decipher",
            "true_link",
            "true_tail",
            "true_tail_decipher",
        ]
        return {
            FileType.json:
            JSONFileLoader([
                FileLoaderField("gold_head", target_field_names[0], str),
                FileLoaderField("gold_head",
                                target_field_names[1],
                                str,
                                parser=map_preprocessor),
                FileLoaderField("gold_predicate", target_field_names[2], str),
                FileLoaderField("gold_tail", target_field_names[3], str),
                FileLoaderField("gold_tail",
                                target_field_names[4],
                                str,
                                parser=map_preprocessor),
            ]),
            FileType.datalab:
            DatalabFileLoader([
                FileLoaderField("head", target_field_names[0], str),
                FileLoaderField("head",
                                target_field_names[1],
                                str,
                                parser=map_preprocessor),
                FileLoaderField("link", target_field_names[2], str),
                FileLoaderField("tail", target_field_names[3], str),
                FileLoaderField("tail",
                                target_field_names[4],
                                str,
                                parser=map_preprocessor),
            ]),
        }
 def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]:
     target_field_names = ["context", "options", "question_mark", "answers"]
     return {
         FileType.json:
         JSONFileLoader([
             FileLoaderField("context", target_field_names[0], str),
             FileLoaderField("options", target_field_names[1], list),
             FileLoaderField("question_mark", target_field_names[2], str),
             FileLoaderField("answers", target_field_names[3], dict),
         ]),
         FileType.datalab:
         DatalabFileLoader([
             FileLoaderField("context", target_field_names[0], str),
             FileLoaderField("options", target_field_names[1], list),
             FileLoaderField("question_mark", target_field_names[2], str),
             FileLoaderField("answers", target_field_names[3], dict),
         ]),
     }
Example #9
0
 def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]:
     return {
         FileType.tsv:
         TSVFileLoader([
             FileLoaderField(0, cls.OUTPUT_FIELDS[0], str),
             FileLoaderField(1, cls.OUTPUT_FIELDS[1], str),
         ], ),
         FileType.json:
         JSONFileLoader([
             FileLoaderField(cls.JSON_FIELDS[0], cls.OUTPUT_FIELDS[0], str),
             FileLoaderField(cls.JSON_FIELDS[1], cls.OUTPUT_FIELDS[1], str),
         ]),
         FileType.datalab:
         DatalabFileLoader([
             FileLoaderField(cls.JSON_FIELDS[0], cls.OUTPUT_FIELDS[0], str),
             FileLoaderField(cls.JSON_FIELDS[1], cls.OUTPUT_FIELDS[1], str),
         ]),
     }
Example #10
0
 def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]:
     target_field_names = ["text", "true_label"]
     return {
         FileType.tsv:
         TSVFileLoader([
             FileLoaderField(0, target_field_names[0], str),
             FileLoaderField(1, target_field_names[1], str),
         ], ),
         FileType.json:
         JSONFileLoader([
             FileLoaderField("text", target_field_names[0], str),
             FileLoaderField("true_label", target_field_names[1], str),
         ]),
         FileType.datalab:
         DatalabFileLoader([
             FileLoaderField("text", target_field_names[0], str),
             FileLoaderField("label", target_field_names[1], str),
         ]),
     }
Example #11
0
 def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]:
     target_field_names = ["context", "question", "answers"]
     return {
         FileType.json:
         JSONFileLoader([
             FileLoaderField(
                 target_field_names[0],
                 target_field_names[0],
                 str,
                 strip_before_parsing=False,
             ),
             FileLoaderField(
                 target_field_names[1],
                 target_field_names[1],
                 str,
                 strip_before_parsing=False,
             ),
             FileLoaderField(target_field_names[2], target_field_names[2]),
         ]),
         FileType.datalab:
         DatalabFileLoader([
             FileLoaderField(
                 "context",
                 target_field_names[0],
                 str,
                 strip_before_parsing=False,
             ),
             FileLoaderField(
                 "question",
                 target_field_names[1],
                 str,
                 strip_before_parsing=False,
             ),
             FileLoaderField("answers", target_field_names[2]),
         ]),
     }
 def default_output_file_loaders(cls) -> dict[FileType, FileLoader]:
     field_name = "predicted_edits"
     return {
         FileType.json:
         JSONFileLoader([FileLoaderField(field_name, field_name, dict)]),
     }