def default_output_file_loaders(cls) -> dict[FileType, FileLoader]: return { FileType.json: JSONFileLoader([ FileLoaderField("predicted_answers", "predicted_answers", dict) ]) }
def default_output_file_loaders(cls) -> dict[FileType, FileLoader]: field_name = "hypothesis" return { FileType.text: TextFileLoader(field_name, str), FileType.json: JSONFileLoader([FileLoaderField(field_name, field_name, str)]), }
def default_output_file_loaders(cls) -> dict[FileType, FileLoader]: return { FileType.conll: CoNLLFileLoader([FileLoaderField(1, "pred_tags", str)]), FileType.json: JSONFileLoader([ FileLoaderField("tokens", "tokens", list), FileLoaderField("predicted_tags", "pred_tags", list), ]), }
def default_output_file_loaders(cls) -> dict[FileType, FileLoader]: target_field_names = ["predict", "predictions", "true_rank"] return { FileType.json: JSONFileLoader([ FileLoaderField("predict", target_field_names[0], str), FileLoaderField("predictions", target_field_names[1], list), FileLoaderField("true_rank", target_field_names[2], int), ]) }
def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]: return { FileType.json: JSONFileLoader([ FileLoaderField('text', 'text', str), FileLoaderField('edits', 'edits', dict), ]), FileType.datalab: DatalabFileLoader([ FileLoaderField('text', 'text', str), FileLoaderField('edits', 'edits', dict), ]), }
def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]: field_name = 'text' return { FileType.text: TextFileLoader(), FileType.json: JSONFileLoader([ FileLoaderField("text", field_name, str), ]), FileType.datalab: DatalabFileLoader([ FileLoaderField("text", field_name, str), ]), }
def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]: file_path = cache_api.cache_online_file( 'http://phontron.com/download/explainaboard/pre_computed/kg/entity2wikidata.json', # noqa 'pre_computed/kg/entity2wikidata.json', ) with open(file_path, 'r') as file: entity_dic = json.loads(file.read()) map_preprocessor = KGMapPreprocessor( resources={"dictionary": entity_dic}) target_field_names = [ "true_head", "true_head_decipher", "true_link", "true_tail", "true_tail_decipher", ] return { FileType.json: JSONFileLoader([ FileLoaderField("gold_head", target_field_names[0], str), FileLoaderField("gold_head", target_field_names[1], str, parser=map_preprocessor), FileLoaderField("gold_predicate", target_field_names[2], str), FileLoaderField("gold_tail", target_field_names[3], str), FileLoaderField("gold_tail", target_field_names[4], str, parser=map_preprocessor), ]), FileType.datalab: DatalabFileLoader([ FileLoaderField("head", target_field_names[0], str), FileLoaderField("head", target_field_names[1], str, parser=map_preprocessor), FileLoaderField("link", target_field_names[2], str), FileLoaderField("tail", target_field_names[3], str), FileLoaderField("tail", target_field_names[4], str, parser=map_preprocessor), ]), }
def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]: target_field_names = ["context", "options", "question_mark", "answers"] return { FileType.json: JSONFileLoader([ FileLoaderField("context", target_field_names[0], str), FileLoaderField("options", target_field_names[1], list), FileLoaderField("question_mark", target_field_names[2], str), FileLoaderField("answers", target_field_names[3], dict), ]), FileType.datalab: DatalabFileLoader([ FileLoaderField("context", target_field_names[0], str), FileLoaderField("options", target_field_names[1], list), FileLoaderField("question_mark", target_field_names[2], str), FileLoaderField("answers", target_field_names[3], dict), ]), }
def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]: return { FileType.tsv: TSVFileLoader([ FileLoaderField(0, cls.OUTPUT_FIELDS[0], str), FileLoaderField(1, cls.OUTPUT_FIELDS[1], str), ], ), FileType.json: JSONFileLoader([ FileLoaderField(cls.JSON_FIELDS[0], cls.OUTPUT_FIELDS[0], str), FileLoaderField(cls.JSON_FIELDS[1], cls.OUTPUT_FIELDS[1], str), ]), FileType.datalab: DatalabFileLoader([ FileLoaderField(cls.JSON_FIELDS[0], cls.OUTPUT_FIELDS[0], str), FileLoaderField(cls.JSON_FIELDS[1], cls.OUTPUT_FIELDS[1], str), ]), }
def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]: target_field_names = ["text", "true_label"] return { FileType.tsv: TSVFileLoader([ FileLoaderField(0, target_field_names[0], str), FileLoaderField(1, target_field_names[1], str), ], ), FileType.json: JSONFileLoader([ FileLoaderField("text", target_field_names[0], str), FileLoaderField("true_label", target_field_names[1], str), ]), FileType.datalab: DatalabFileLoader([ FileLoaderField("text", target_field_names[0], str), FileLoaderField("label", target_field_names[1], str), ]), }
def default_dataset_file_loaders(cls) -> dict[FileType, FileLoader]: target_field_names = ["context", "question", "answers"] return { FileType.json: JSONFileLoader([ FileLoaderField( target_field_names[0], target_field_names[0], str, strip_before_parsing=False, ), FileLoaderField( target_field_names[1], target_field_names[1], str, strip_before_parsing=False, ), FileLoaderField(target_field_names[2], target_field_names[2]), ]), FileType.datalab: DatalabFileLoader([ FileLoaderField( "context", target_field_names[0], str, strip_before_parsing=False, ), FileLoaderField( "question", target_field_names[1], str, strip_before_parsing=False, ), FileLoaderField("answers", target_field_names[2]), ]), }
def default_output_file_loaders(cls) -> dict[FileType, FileLoader]: field_name = "predicted_edits" return { FileType.json: JSONFileLoader([FileLoaderField(field_name, field_name, dict)]), }