def compute_motor_command(self, m_ag):
     m_ag = bounds_min_max(m_ag, self.conf.m_mins, self.conf.m_maxs)
     if self.motor_traj_type == "DMP":
         dyn_idx = range(self.n_dynamic_motor_dims *
                         self.n_motor_traj_points)
         m_weighted = m_ag[dyn_idx] * self.max_params
         if self.optim_initial_position:
             m_weighted[:self.
                        n_dynamic_motor_dims] = m_weighted[:self.
                                                           n_dynamic_motor_dims] / self.max_params
         if self.optim_end_position:
             m_weighted[-self.n_dynamic_motor_dims:] = m_weighted[
                 -self.n_dynamic_motor_dims:] / self.max_params
         m_dyn = self.motor_dmp.trajectory(m_weighted)
         static_idx = range(
             self.n_dynamic_motor_dims * self.n_motor_traj_points,
             self.conf.m_ndims)
         m_static = m_ag[static_idx]
         m = [
             list(m_dyn_param) + list(m_static)
             for m_dyn_param in list(m_dyn)
         ]
     else:
         raise NotImplementedError
     return m
 def compute_motor_command(self, m_ag):  
     m_ag = bounds_min_max(m_ag, self.conf.m_mins, self.conf.m_maxs)
     if self.motor_traj_type == "DMP":
         dyn_idx = range(self.n_dynamic_motor_dims * self.n_motor_traj_points)
         #print "m params", m_ag[dyn_idx] * self.max_params
         m_dyn = self.motor_dmp.trajectory(m_ag[dyn_idx] * self.max_params)
         #print "mov", m_dyn
         static_idx = range(self.n_dynamic_motor_dims * self.n_motor_traj_points, self.conf.m_ndims)
         m_static = m_ag[static_idx]
         m = [list(m_dyn_param) + list(m_static) for m_dyn_param in list(m_dyn)]
     else:
         raise NotImplementedError
     return m
Example #3
0
 def compute_motor_command(self, m_ag):  
     m_ag = bounds_min_max(m_ag, self.conf.m_mins, self.conf.m_maxs)
     if self.motor_traj_type == "DMP":
         dyn_idx = range(self.n_dynamic_motor_dims * self.n_motor_traj_points)
         m_weighted = m_ag[dyn_idx] * self.max_params
         if self.optim_initial_position:
             m_weighted[:self.n_dynamic_motor_dims] = m_weighted[:self.n_dynamic_motor_dims] / self.max_params
         if self.optim_end_position:
             m_weighted[-self.n_dynamic_motor_dims:] = m_weighted[-self.n_dynamic_motor_dims:] / self.max_params
         m_dyn = self.motor_dmp.trajectory(m_weighted)
         static_idx = range(self.n_dynamic_motor_dims * self.n_motor_traj_points, self.conf.m_ndims)
         m_static = m_ag[static_idx]
         m = [list(m_dyn_param) + list(m_static) for m_dyn_param in list(m_dyn)]
     else:
         raise NotImplementedError
     return m
Example #4
0
 def compute_sensori_effect(self, m_traj):
     s = self.env.update(m_traj, reset=False, log=False)
     y = np.array(s[:self.move_steps])
     if self.sensori_traj_type == "DMP":
         self.sensori_dmp.dmp.imitate_path(np.transpose(y))
         w = self.sensori_dmp.dmp.w.flatten()
         s_ag = list(w)
     elif self.sensori_traj_type == "samples":
         w = y[self.samples, :]
         s_ag = list(np.transpose(w).flatten())
     else:
         raise NotImplementedError
     s = s_ag
     if self.gui:
         self.plot()
     return bounds_min_max(s, self.conf.s_mins, self.conf.s_maxs)
Example #5
0
 def compute_sensori_effect(self, m_traj):
     s = self.env.update(m_traj, reset=False, log=False)
     self.s_traj = s
     y = np.array(s[:self.move_steps])
     if self.sensori_traj_type == "DMP":
         self.sensori_dmp.dmp.imitate_path(np.transpose(y))
         w = self.sensori_dmp.dmp.w.flatten()
         s_ag = list(w)    
     elif self.sensori_traj_type == "samples":
         w = y[self.samples,:]
         s_ag = list(np.transpose(w).flatten())
     elif self.sensori_traj_type == "end_point":
         s_ag = y[self.end_point,:].flatten()
     else:
         raise NotImplementedError  
     s = s_ag
     return bounds_min_max(s, self.conf.s_mins, self.conf.s_maxs)    
 def compute_sensori_effect(self, m_traj):
     s = self.env.update(m_traj, log=False)
     y = np.array(s[:self.move_steps])
     if self.sensori_traj_type == "DMP":
         self.sensori_dmp.dmp.imitate_path(np.transpose(y))
         w = self.sensori_dmp.dmp.w.flatten()
         s_ag = list(w)    
     elif self.sensori_traj_type == "samples":
         w = y[self.samples,:]
         s_ag = list(np.transpose(w).flatten())
     else:
         raise NotImplementedError  
     s = s_ag + s[self.move_steps:] 
     if self.gui:
         #if abs(s[11] - (-0.85)) > 0.1: #Tool1
         #if s[-2] > 0: # One of the boxes
         self.plot()
     return bounds_min_max(s, self.conf.s_mins, self.conf.s_maxs)    
Example #7
0
 def compute_sensori_effect(self, m_traj):
     s = self.env.update(m_traj, log=False)
     y = np.array(s[:self.move_steps])
     if self.sensori_traj_type == "DMP":
         self.sensori_dmp.dmp.imitate_path(np.transpose(y))
         w = self.sensori_dmp.dmp.w.flatten()
         s_ag = list(w)
     elif self.sensori_traj_type == "samples":
         w = y[self.samples, :]
         s_ag = list(np.transpose(w).flatten())
     else:
         raise NotImplementedError
     s = s_ag + s[self.move_steps:]
     if self.gui:
         #if abs(s[11] - (-0.85)) > 0.1: #Tool1
         #if s[-2] > 0: # One of the boxes
         self.plot()
     return bounds_min_max(s, self.conf.s_mins, self.conf.s_maxs)
Example #8
0
 def compute_motor_command(self, m_ag):
     m_ag = bounds_min_max(m_ag, self.conf.m_mins, self.conf.m_maxs)
     if self.motor_traj_type == "DMP":
         dyn_idx = range(self.n_dynamic_motor_dims *
                         self.n_motor_traj_points)
         #print "m params", m_ag[dyn_idx] * self.max_params
         m_dyn = self.motor_dmp.trajectory(m_ag[dyn_idx] * self.max_params)
         #print "mov", m_dyn
         static_idx = range(
             self.n_dynamic_motor_dims * self.n_motor_traj_points,
             self.conf.m_ndims)
         m_static = m_ag[static_idx]
         m = [
             list(m_dyn_param) + list(m_static)
             for m_dyn_param in list(m_dyn)
         ]
     else:
         raise NotImplementedError
     return m
 def compute_sensori_effect(self, m_traj):
     s = self.env.update(m_traj, reset=False, log=False)
     self.s_traj = s
     y = np.array(s[:self.move_steps])
     if self.sensori_traj_type == "DMP":
         self.sensori_dmp.dmp.imitate_path(np.transpose(y))
         w = self.sensori_dmp.dmp.w.flatten()
         s_ag = list(w)    
     elif self.sensori_traj_type == "samples":
         w = y[self.samples,:]
         s_ag = list(np.transpose(w).flatten())
     else:
         raise NotImplementedError  
     s = s_ag
     if self.gui:
         #if abs(s[11] - (-0.85)) > 0.1: #Tool1
         #if s[-2] > 0: # One of the boxes
         #if abs(s[-1] - 0.8) > 0.01:
         #if np.random.rand() < 0.001:
         #if abs(s[-1] - s[-3]) > 0.01:
         self.plot()
         #print 'dyn env s', s
     return bounds_min_max(s, self.conf.s_mins, self.conf.s_maxs)