def test_normalise_fixed_point(): root_expr = sigma(v('x'), product([prob([v('z'), v('y')], [v('b'), v('x'), do(v('a'))]), prob([v('z'), v('y'), v('x')], [do(v('a'))])])) bindings = {'x' : 'xxx', 'z' : 'zzz', 'y' : 'yyy', 'a' : 'aaa'} state = ProofState(0, 0, bindings, root_expr) normalised_state = state.normalise() expected_result = sigma(v(0), product((prob((v(0), v(1), v(2)),(do(v(3)), )), prob((v(1), v(2)), (do(v(3)), v(0), v(4)))))) assert normalised_state.root_expr == expected_result
def test_gen_matches_deep(): # sigma_y { p(x|y,do(z)) * p(y|do(z)) } root_expr = sigma(v("y"), product([prob([v("x")], [v("y"), do(v("z"))]), prob([v("y")], [do(v("z"))])])) matches = list(gen_matches(is_v, root_expr)) assert len(matches) == 6 expr, inject = matches[3] assert expr == v("z") root_expr_prime = inject("walrus") assert root_expr_prime == sigma( v("y"), product([prob([v("x")], [v("y"), do("walrus")]), prob([v("y")], [do(v("z"))])]) )
def gen_expansions(value, proof_state): for (prob_expr, inject) in E.gen_matches(E.is_prob, proof_state.root_expr): prob_vars = get_variable_order(prob_expr) prob_values = [proof_state.bindings[v] for v in prob_vars] if value in prob_values: continue # prob([x],[w]) -> sigma(y, product([prob([x], [y, w]), p([y], [w])])) i = new_variable_name(proof_state.bindings) v_i = E.v(i) alpha_left = tuple(prob_expr[1]) alpha_right = (v_i, ) + tuple(prob_expr[2]) alpha = E.prob(alpha_left, alpha_right) beta_left = (v_i, ) beta_right = tuple(prob_expr[2]) beta = E.prob(beta_left, beta_right) expr_prime = E.sigma(v_i, E.product([alpha, beta])) succ_length = proof_state.length + 1 succ_heuristic = 0 succ_bindings = dict(proof_state.bindings) succ_bindings[i] = value succ_root_expr = inject(expr_prime) succ_comment = 'conditioned %s on %s' % ( pleasantly_fmt(proof_state.bindings, prob_expr), make_canonical_variable_name(value)) succ_proof_state = ProofState(succ_length, succ_heuristic, succ_bindings, succ_root_expr, parent=proof_state, comment=succ_comment) yield succ_proof_state
def test_gen_matches_deep(): # sigma_y { p(x|y,do(z)) * p(y|do(z)) } root_expr = sigma( v('y'), product([ prob([v('x')], [v('y'), do(v('z'))]), prob([v('y')], [do(v('z'))]) ])) matches = list(gen_matches(is_v, root_expr)) assert len(matches) == 6 expr, inject = matches[3] assert expr == v('z') root_expr_prime = inject('walrus') assert root_expr_prime == sigma( v('y'), product([ prob([v('x')], [v('y'), do('walrus')]), prob([v('y')], [do(v('z'))]) ]))
def test_normalise_single_iter(): root_expr = sigma(v('x'), product([prob([v('z'), v('y')], [v('b'), v('x'), do(v('a'))]), prob([v('z'), v('y'), v('x')], [do(v('a'))])])) bindings = {'x' : 'xxx', 'z' : 'zzz', 'y' : 'yyy', 'a' : 'aaa'} state = ProofState(0, 0, bindings, root_expr) normalised_state = state.normalise(max_iters=1) # first up: expression ordering (nb do(v()) comes before v() in sorted lists) # sigma(x, product([prob([x y z],[do(a)]), prob([y z], [(do a) b x])])) # so, variable order should be: # x y z a b # so, new variable names should be # 0 1 2 3 4 # so, normalised state should be # sigma(0, product([prob([0 1 2],[do(3)]), prob([1 2], [(do 3) 4 0])])) expected_result = sigma(v(0), product((prob((v(0), v(1), v(2)),(do(v(3)), )), prob((v(1), v(2)), (do(v(3)), v(4), v(0)))))) assert normalised_state.root_expr == expected_result