Example #1
0
        ]

    m[s.z] = pc.multiplication(*exponents)


canonical_form.add_rule(pc.multiplication(s.x), s.x)
canonical_form.add_rule(pc.addition(s.x), s.x)
canonical_form.add_rule(pc.exponentiation(s.x), s.x)

canonical_form.add_rule(1 / s.x, s.x**-1)
canonical_form.add_rule(pc.exp(s.x), pc.e**s.x)
canonical_form.add_rule(s.x**s.y,
                        s.z,
                        normalize_exponentiation,
                        condition=pc.equal(
                            pc.DominantType(pc.Type(s.y), pc.Types.Real),
                            pc.Types.Real))

canonical_form.add_rule(pc.exp(s.x), pc.e**s.x)
canonical_form.add_rule(pc.sqrt(s.x), s.x**(1 / pc.S(2)))

canonical_form.add_rule(s.x > s.y, s.y < s.x)
canonical_form.add_rule(s.x >= s.y, s.y <= s.x)
canonical_form.add_rule(s.x <= s.y, pc.Or(s.x < s.y, pc.equal(s.x, s.y)))
canonical_form.add_rule(pc.unequal(s.x, s.y), pc.Not(pc.equal(s.x, s.y)))

canonical_form.add_rule(abs(s.x),
                        pc.Max(s.x, -s.x),
                        condition=pc.equal(
                            pc.DominantType(pc.Type(s.x), pc.Types.Real),
                            pc.Types.Real))
Example #2
0
def issubtype(x, t):
    return pc.equal(pc.DominantType(pc.Type(x), t), t)
Example #3
0
evaluator.add_rule(s.x * 1, s.x)
evaluator.add_rule(s.x * 0, 0)

evaluator.add_rule(s.x**1, s.x)
evaluator.add_rule(s.x**0, 1)
evaluator.add_rule(1**s.x, 1)
evaluator.add_rule(0**s.x, 0, condition=s.x > 0)

factor_evaluator.add_rule(s.x * s.x, s.x**2)
evaluator.add_rule(s.x * s.x**-1, 1)

evaluator.add_rule(
    (s.x**s.a)**s.b,
    s.x**(s.a * s.b),
    condition=pc.equal(pc.DominantType(pc.Type(s.b), pc.Types.Integer),
                       pc.Types.Integer))

from .numeric_evaluator import is_even, is_uneven
from .type_evaluator import issubtype

evaluator.add_rule((s.x**s.a)**(s.a**-1),
                   abs(s.x),
                   condition=pc.And(issubtype(s.x, pc.Types.Real),
                                    is_even(s.a)))
evaluator.add_rule((s.x**s.a)**(s.a**-1),
                   s.x,
                   condition=pc.And(issubtype(s.x, pc.Types.Real),
                                    is_uneven(s.a)))

evaluator.add_rule((-s.x)**(s.a), s.x**s.a, condition=is_even(s.a))
Example #4
0
import expresso.pycas as pc
from . import rule_symbols as s

ordered_types = (pc.Types.Boolean, pc.Types.Natural, pc.Types.Integer,
                 pc.Types.Rational, pc.Types.Real, pc.Types.Complex)

evaluator = pc.RewriteEvaluator(recursive=True, split_binary=True)

from .logic_evaluator import is_explicit_natural, is_function_type

evaluator.add_rule(pc.DominantType(s.x), s.x)

for i in range(len(ordered_types)):
    evaluator.add_rule(pc.DominantType(pc.Types.Imaginary, ordered_types[i]),
                       pc.Types.Complex)
    evaluator.add_rule(pc.Type(ordered_types[i]), pc.Types.Type)
    for j in range(i):
        evaluator.add_rule(pc.DominantType(ordered_types[j], ordered_types[i]),
                           ordered_types[i])


def eval_type_equality(m):
    tx = m[s.x]
    ty = m[s.y]
    if tx in ordered_types and ty in ordered_types:
        m[s.z] = tx == ty
        return True
    return False


evaluator.add_rule(pc.equal(s.x, s.y), False, eval_type_equality)