Example #1
0
 def extract(cls, node):
     attrs = {
         'shape': node.shape,
         'data_type': np.float32,  # TODO: other types?
     }
     Parameter.update_node_stat(node, {})
     return cls.enabled
Example #2
0
 def extract(node):
     attrs = {
         'data_type': tf_dtype_extractor(node.pb.attr["dtype"].type),
         'shape': tf_tensor_shape(node.pb.attr["shape"].shape),
         'permute_attrs': PermuteAttrs().update_attrs(attrs=[('shape', 'output:0')])
     }
     Parameter.update_node_stat(node, attrs)
     return __class__.enabled
 def extract(node):
     attrs = {
         'shape':
         np.array([d.dim_value for d in node.pb.type.tensor_type.shape.dim],
                  dtype=np.int64),
     }
     Parameter.update_node_stat(node, attrs)
     return __class__.enabled
Example #4
0
def create_parameter_with_empty_attrs(graph, param_name):
    graph.add_node(param_name, kind='op', op='Parameter', name=param_name, pb=None, shape=None)
    parameter_node = Node(graph, param_name)
    # need to manually update necessary attrs for the node because extractor will not be called
    # for it because the node does not have .pb attribute
    Parameter.update_node_stat(parameter_node, {})
    parameter_node['internal_layer_id'] = len(graph.nodes)

    return parameter_node
Example #5
0
 def extract(cls, node):
     t_type = node.pb.type.tensor_type
     attrs = {
         'shape':
         np.array([d.dim_value for d in t_type.shape.dim], dtype=np.int64),
         'data_type':
         TENSOR_TYPE_TO_NP_TYPE[t_type.elem_type]
     }
     Parameter.update_node_stat(node, attrs)
     return cls.enabled
Example #6
0
 def extract(cls, node):
     t_type = node.pb.type.tensor_type
     attrs = {
         'shape':
         shape_array([
             d.dim_value if
             (not hasattr(d, 'dim_param') or d.dim_param == '')
             and d.dim_value != 0 else dynamic_dimension_value
             for d in t_type.shape.dim
         ]),
         'data_type':
         TENSOR_TYPE_TO_NP_TYPE[t_type.elem_type]
     }
     Parameter.update_node_stat(node, attrs)
     return cls.enabled
Example #7
0
def convert_graph_inputs_to_parameters(internal_graph, internal_graph_proto):
    # create Parameter nodes for the body graph
    body_parameters = []
    body_parameter_names = []
    for idx, pb_node in enumerate(internal_graph_proto['input_arg']):
        param_id = internal_graph.unique_id(pb_node.name)
        internal_graph.add_node(param_id,
                                name=param_id,
                                kind='op',
                                op='Parameter',
                                pb=None,
                                shape=None)
        parameter_node = Node(internal_graph, pb_node.name)
        Parameter.update_node_stat(
            parameter_node, {
                'data_type':
                tf_dtype_extractor(pb_node.type),
                'permute_attrs':
                PermuteAttrs().update_attrs(attrs=[('shape', 'output:0')])
            })
        body_parameters.append(parameter_node)
        body_parameter_names.append(param_id)
    return body_parameters, body_parameter_names
Example #8
0
 def extract(cls, node):
     if 'value' in node.symbol_dict:
         Const.update_node_stat(node, {'value': node.symbol_dict['value']})
     else:
         Parameter.update_node_stat(node, {})
     return cls.enabled
Example #9
0
    def extract(cls, loop_node):
        Loop.update_node_stat(loop_node, {})
        loop_name = loop_node.soft_get('name', loop_node.id)

        # check that required body and condition functions exist in the graph library
        main_graph = loop_node.graph
        body_graph_name = loop_node.pb.attr['body'].func.name
        cond_graph_name = loop_node.pb.attr['cond'].func.name
        assert 'library' in main_graph.graph, 'The graph does not contain a library that is required ' \
                                              'by node with name "{}".'.format(loop_name)
        library_graph = main_graph.graph['library']

        assert body_graph_name in library_graph, 'The library does not contain a function with name "{}" ' \
                                                 'that is required by node ' \
                                                 'with name "{}".'.format(body_graph_name, loop_name)
        body_graph_proto = library_graph[body_graph_name]

        assert cond_graph_name in library_graph, 'The library does not contain a function with name "{}" ' \
                                                 'that is required by node ' \
                                                 'with name "{}".'.format(cond_graph_name, loop_name)
        cond_graph_proto = library_graph[cond_graph_name]

        body_graph = Graph()
        # fill the body graph
        for attr_key in main_graph.graph.keys():
            if attr_key != 'library':
                body_graph.graph[attr_key] = copy.deepcopy(main_graph.graph[attr_key])
            else:
                # it is sufficient to have a link to the library
                body_graph.graph['library'] = main_graph.graph['library']
        loop_node['body'] = body_graph

        # create Parameter nodes for the body graph
        body_parameters = []
        body_parameter_names = []
        for idx, pb_node in enumerate(body_graph_proto['input_arg']):
            param_id = body_graph.unique_id(pb_node.name)
            body_graph.add_node(param_id, name=param_id, kind='op', op='Parameter', pb=None, shape=None)
            parameter_node = Node(body_graph, pb_node.name)
            Parameter.update_node_stat(parameter_node,
                                       {'data_type': tf_dtype_extractor(pb_node.type),
                                        'permute_attrs': PermuteAttrs().update_attrs(attrs=[('shape', 'output:0')])}
                                       )
            body_parameters.append(parameter_node)
            body_parameter_names.append(param_id)

        # update the loop body graph with the body function graph
        body_results = []
        update_body_graph(body_graph, body_graph_proto, body_parameter_names, body_results)

        # update the loop body graph with the condition function graph
        update_body_graph(body_graph, cond_graph_proto, body_parameter_names, body_results)

        # add 'internal_layer_id' attribute which is a must have attribute for the loop body node
        for idx, body_node in enumerate(body_graph.get_op_nodes()):
            body_node['internal_layer_id'] = idx

        body_graph.stage = 'front'

        # Currently,
        # Loop Inputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # Body Inputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # Body Outputs Order:
        #   0      - current iteration
        #   1      - trip count
        #   2..    - "loop carried" dependencies variables
        #
        # Loop Outputs Order:
        #   0    - current iteration
        #   1    - trip count
        #   2..  - "loop carried" dependencies variables
        #
        # so inputs must be reordered and execution condition must be created in the front transformation
        # to be aligned with the specification

        # connect external input ports with body parameter nodes except current iteration
        # since it must be disconnected from external port
        for idx in range(1, len(body_parameters)):
            Loop.connect_body_input(loop_node, idx, body_parameters[idx])

        # mark current iteration input Parameter node and execution condition Result node
        Loop.mark_current_iteration_parameter_node(loop_node, body_parameters[0])
        Loop.mark_execution_condition_result_node(loop_node, body_results[-1])

        # connect back edges in the body except current iteration
        for idx in range(1, len(body_parameters)):
            Loop.add_back_edge(loop_node, body_parameters[idx], body_results[idx])

        # connect body outputs with Loop operation output ports except the execution condition result
        for idx in range(len(body_results)-1):
            Loop.connect_body_output(loop_node, idx, body_results[idx])

        # run function to parse body nodes attributes similar to the main graph
        extract_node_attrs(body_graph, lambda node: tf_op_extractor(node, check_for_duplicates(tf_op_extractors)))
        return cls.enabled
Example #10
0
    def extract(cls, loop_node):
        Loop.update_node_stat(loop_node, {})

        body_graph_proto = onnx_attr(loop_node, 'body', 'g', None)
        main_graph = loop_node.graph

        # create a Graph object for the body and take graph attributes from the main graph
        body_graph = Graph()
        main_graph_attrs_copy = copy.deepcopy(main_graph.graph)
        del main_graph_attrs_copy['tensor_mapping']
        body_graph.graph.update(main_graph_attrs_copy)
        loop_node['body'] = body_graph

        # maps a tensor name to a node produced it and the node port: str -> (node_id, node_port)
        data_nodes_map = {}
        body_graph.graph[
            'tensor_mapping'] = data_nodes_map  # save mapping for possible Loop inside the Loop

        body_parameters = add_initializers_and_inputs_to_graph(
            body_graph, body_graph_proto, data_nodes_map)

        external_edges = [
        ]  # (src_node, src_out_port), dest_body_parameter_node
        additional_params = {
        }  # (src_node, src_out_port) -> parameter_node (for manually added Parameters)
        # Go through all nodes in the original model order because data nodes are defined on-the-fly and order matters
        for pb_node in body_graph_proto.node:
            # create an NX node
            id = body_graph.unique_id(node_id(pb_node))
            body_graph.add_node(id, pb=pb_node, kind='op')

            # add incoming edges based on data_nodes_map
            for dst_port, inp in enumerate(pb_node.input):
                # should add edge inp --> id
                if inp not in data_nodes_map:
                    if inp == '':
                        # input is omitted; most likely it corresponds to an optional input for an operator
                        continue
                    elif inp in main_graph.graph['tensor_mapping']:
                        log.debug(
                            'The edge between outer and inner graphs detected: {} -> {}'
                            .format(inp, id))
                        if main_graph.graph['tensor_mapping'][
                                inp] not in additional_params:
                            # create new Parameter body node and connect the body node with the outer graph using it
                            param_id = str(inp)
                            body_graph.add_node(param_id,
                                                kind='op',
                                                op='Parameter',
                                                name=param_id,
                                                pb=None,
                                                shape=None)
                            parameter_node = Node(body_graph, param_id)
                            # need to manually update necessary attrs for the node because extractor will not be called
                            # for it because the node does not have .pb attribute
                            Parameter.update_node_stat(parameter_node, {})
                            external_edges.append(
                                (main_graph.graph['tensor_mapping'][inp],
                                 parameter_node))
                            src_id, src_port = param_id, 0
                            additional_params[main_graph.graph[
                                'tensor_mapping'][inp]] = parameter_node
                        else:
                            src_id, src_port = additional_params[
                                main_graph.graph['tensor_mapping'][inp]].id, 0
                    else:
                        raise Error(
                            'Reference to "{}" is not satisfied. A node refer not existing data tensor. ONNX '
                            'model is not consistent. Protobuf fragment: {}',
                            inp, pb_node)
                else:
                    src_id, src_port = data_nodes_map[inp]

                assert (body_graph.has_node(src_id))
                edge_attrs = {
                    'out': src_port,
                    'in': dst_port,
                    'name': inp,
                    'fw_tensor_debug_info': [(inp, inp)],
                    'in_attrs': ['in', 'name'],
                    'out_attrs': ['out', 'name'],
                    'data_attrs': ['fw_tensor_debug_info']
                }
                body_graph.add_edge(src_id, id, **edge_attrs)

            # add outgoing edges to data_nodes_map
            for src_port, out in enumerate(pb_node.output):
                if out in data_nodes_map:
                    log.debug("Detected reuse of blob {}.".format(out))
                data_nodes_map[out] = (id, src_port)

        body_results = []
        for output in body_graph_proto.output:
            tensor_name = str(output.name)
            node_name, output_port = data_nodes_map[tensor_name]
            assert body_graph.has_node(
                node_name
            ), 'The body graph does not contain output with name "{}"'.format(
                node_name)
            body_results.append(
                Node(body_graph,
                     add_opoutput(body_graph, node_name, output_port, False)))

        # add 'internal_layer_id' attribute which is a must have attribute for the loop body node
        for idx, body_node in enumerate(body_graph.get_op_nodes()):
            body_node['internal_layer_id'] = idx

        loop_carried_dependencies_count = len(body_graph_proto.input) - 2
        scan_outputs_count = len(
            body_graph_proto.output) - 1 - loop_carried_dependencies_count

        # Loop inputs:
        #   0 - trip count
        #   1 - execution condition
        #   2 .. - loop carried dependencies

        # Loop outputs:
        #   0 .. loop_carried_dependencies_count - 1 - loop carried dependencies
        #   loop_carried_dependencies_count .. - scan outputs

        # Body inputs:
        #   0 - iteration number
        #   1 - execution condition
        #   2 .. - loop carried dependencies

        # Body outputs:
        #   0 - execution condition
        #   1 .. loop_carried_dependencies_count - loop carried dependencies
        #   loop_carried_dependencies_count + 1 .. - scan outputs

        body_graph.stage = 'front'
        # some of the inputs/outputs may not be connected but the normalization transformation will take care of it
        # connection Loop body nodes with external input edges
        next_loop_input_port_idx = sorted(loop_node.in_edges().keys())[-1] + 1
        for (src_node, src_port), body_node in external_edges:
            main_graph.add_edge(
                src_node, loop_node.id, **{
                    'out': src_port,
                    'in': next_loop_input_port_idx,
                    'name': src_node,
                    'fw_tensor_debug_info': [(src_node, src_node)],
                    'in_attrs': ['in', 'name'],
                    'out_attrs': ['out', 'name'],
                    'data_attrs': ['fw_tensor_debug_info']
                })
            connect_body_input(loop_node, next_loop_input_port_idx, body_node)
            next_loop_input_port_idx += 1

        # mark current iteration input Parameter node
        Loop.mark_current_iteration_parameter_node(loop_node,
                                                   body_parameters[0])

        # connect initial value for "execution condition" input of the loop
        connect_body_input(loop_node, 1, body_parameters[1])
        # add back edge with "execution condition"
        Loop.add_back_edge(loop_node, body_parameters[1], body_results[0])
        # mark "execution condition" Result node
        Loop.mark_execution_condition_result_node(loop_node, body_results[0])

        # connect initial value for "loop carried" dependencies variables
        for idx in range(loop_carried_dependencies_count):
            connect_body_input(loop_node, idx + 2, body_parameters[idx + 2])
        # add back edge for "loop carried" dependencies variables
        for idx in range(loop_carried_dependencies_count):
            Loop.add_back_edge(loop_node, body_parameters[idx + 2],
                               body_results[idx + 1])
        # connect final value for "loop carried" dependencies variables
        for idx in range(loop_carried_dependencies_count):
            connect_body_output(loop_node, idx, body_results[idx + 1])

        # connect "scan outputs" and mark axis for concatenation
        for idx in range(loop_carried_dependencies_count,
                         loop_carried_dependencies_count + scan_outputs_count):
            connect_body_output(loop_node, idx, body_results[idx + 1], axis=0)

        # run function to parse body nodes attributes similar to the main graph
        extract_node_attrs(
            body_graph, lambda node: onnx_op_extractor(
                node, check_for_duplicates(onnx_op_extractors)))
        return cls.enabled
Example #11
0
 def extract(node):
     Parameter.update_node_stat(node)
     return __class__.enabled
Example #12
0
 def extract(node):
     Parameter.update_node_stat(
         node, {'shape': dim_to_shape(node.pb.input_param.shape[0].dim)})
     return __class__.enabled
Example #13
0
 def extract(cls, node):
     Parameter.update_node_stat(node)
     return cls.enabled